Позднеголоценовая динамика растительного покрова и увлажнённости климата юго-восточного сектора Западно-Сибирской равнины по данным палинологического и ризоподного исследований торфяных отложений | Вестн. Том. гос. ун-та. Биология. 2019. № 45 . DOI: 10.17223/19988591/45/9

Позднеголоценовая динамика растительного покрова и увлажнённости климата юго-восточного сектора Западно-Сибирской равнины по данным палинологического и ризоподного исследований торфяных отложений

На восточной окраине Большого Васюганского болота, на террасе р. Бакчар комплексом палеоэкологических методов (спорово-пыльцевым, ризоподным, ботаническим анализом торфа, микроугольковым) изучен изолированный торфяной массив болото Круглое. Две радиоуглеродные даты показали, что седиментация подстилающих минеральных отложений, а затем торфа на данном массиве началась около 5320 календарных лет назад и продолжалась до современности. По данным спорово-пыльцевого анализа за это время растительный покров района исследования сменился от степных разнотравнополынных сообществ к берёзовой лесостепи с участками богато-разнотравных лугов, а затем к сомкнутым южно-таёжным кедрово-берёзовым и берёзовокедровым лесам. Болото в своём эндогенном развитии прошло эвтрофную, мезотрофную и олиготрофную стадии. Переход от эвтрофной стадии в мезотрофную произошел около 3130 календарных лет назад. Одновременно, вероятно вследствие общего повышения увлажнённости климата, на месте существовавшей здесь берёзовой лесостепи распространяются сомкнутые южно-таёжные леса. В период максимального распространения кедровых лесов на исслеДуемой территории (около 1340-880 календарных лет назад) болото перешло в верховую стадию развития. Исследование комплексов раковинных амёб из этого же разреза показало, что их обилие и видовой состав в значительной степени определяются эндогенной стадией развития болота. Но в течение олиготрофной стадии развития болота комплексы раковинных амёб более чувствительны к вековым и десятилетним колебаниям увлажнённости климата, чем локальная болотная и региональная суходольная растительность. В целом выявленная по биологическим индикаторам (пыльцевым комплексам, комплексам раковинных амёб, ботаническому составу торфа, видовому разнообразию палиноморф и микроуголькам) динамика увлажнённости климата хорошо совпадает с данными по более южным лесостепным районам и с историческими свидетельствами климатических изменений, происходивших на юге Западной Сибири. Биологические индикаторы из болота Круглое подтвердили также гипотезу об асинхронности увлажнения степной и лесной зон.

Late-Holocene dynamics of vegetation cover and humidity of climate in the southeastern sector of the West Siberian Plain.pdf Введение На юге Западно-Сибирской равнины расположены основные земледельческие территории производящего хозяйства. Урожайность в этом регионе сильно зависит от погодных условий вегетационного сезона, так как эта территория целиком расположена в «зоне рискованного земледелия». Такова агроклиматическая ситуация в настоящее время и так было в прошлом. Поэтому изучение динамики климата южных территорий Западно-Сибирской равнины имеет большое практическое значение для предвидения экстремальных погодных явлений, приносящих существенный экономический ущерб. Новейшими исследованиями установлено, что частота экстремальных погодных явлений возрастает вследствие наблюдаемого в последние годы глобального потепления климата [1]. Для предсказания возможных неблагоприятных для сельского хозяйства региона климатических изменений необходимо выявить движущие факторы и закономерности, лежащие в их основе. С этой целью проводится мониторинг современных параметров климата. Однако имеющиеся ряды инструментальных метеонаблюдений пока очень коротки и не позволяют определить долговременную цикличность изменения климата. Между тем уже более полувека для реконструкции прошлых изменений ландшафтов и климата используются палеопали-нологические исследования ретроспективных серий образцов из осадочных отложений различного генезиса. Перспективными для этой цели являются торфяные и озёрные отложения. При этом наиболее информативными среди них являются разрезы отложений, расположенные в экотональных районах на границах широтных и высотных зон, например, на южной [2], северной [3] или высотной [4] границах лесной зоны. В целом мы принимаем определения понятий «экотон» и «экотональная экосистема» в трактовке В.В. Соловьёвой [5]. Южная часть Томской области частично захватывает южный экотон лесной зоны Западной Сибири. О длительной и сложной истории формирования ландшафтов изучаемой территории свидетельствует комплексный характер растительного [6] и почвенного покровов [7, 8]. Палеопалинологические исследования, проводившиеся на этой территории, также выявили сложный характер изменения растительного покрова в голоцене [6, 9], наложивший отпечаток на облик пыльцевых диаграмм, делая их порой трудно сопоставимыми друг с другом [10]. Однако палинологический, как и любой другой метод, используемый в изучении долговременных изменений климата, имеет свои особенности, которые необходимо понимать и учитывать. Это позволяет преодолевать многие трудности при использовании палинологических данных для реконструкции палеоклимата и растительности. 166 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова Особенностью палеопалинологической информации является отражение в ней разномасштабной организации биоценозов. Поэтому необходимо по-разному интерпретировать локальные, сублокальные, субрегиональные и региональные компоненты пыльцевых спектров [11]. Однако для этого нужно хорошо знать местную флору и особенности организации растительного покрова. Решение проблемы иногда возникающей несхожести одновозрастных пыльцевых разрезов возможно также при увеличении числа хорошо датированных пыльцевых диаграмм для исследуемой территории и последующей их кластеризации согласно почвенно-растительной комплексности. Понять разномасштабность палеоэкологической информации, заключенной в спорово-пыльцевых диаграммах, позволяют и данные других методов, полученные по тому же разрезу, но отражающие изменение исключительно локальных экологических условий. Для торфяных отложений дополнительным традиционным методом исследования является ботанический анализ торфа [12] и разрабатываемый в последние годы инновационный метод анализа комплексов раковинных амёб, именуемый также ризоподным анализом [13]. Вторая проблема, возникающая при палеоэкологических и палеопали-нологических реконструкциях, связана с выявлением движущих факторов изменения растительного покрова и климата в регионе. Её решение также возможно лишь при четком разграничении локальных и региональных факторов, влиявших на биоценозы. Такой подход, в конечном итоге, позволяет более достоверно выявить региональные и глобальные механизмы, контролировавшие динамику климата на юге Западно-Сибирской равнины в позднем голоцене. Палеопалинологические исследования, сопровождаемые дополнительными палеоэкологическими методами исследования, дают ценнейшую информацию о динамике биогеоценотической оболочки Земли на разных уровнях её организации, позволяя увязывать в логическую картину геоморфологию, почвы, растительный покров, воздушные потоки, климат, а также биоценозы на разных уровнях их организации (от микромира до географической зональности). Однако переход от локального уровня к региональному требует накопления палеоэкологических данных для адекватного отражения географической неоднородности поверхности Земли, без учета которой любые реконструкции глобальных изменений климата будут несостоятельны. В этом плане обширная территории Сибири остаётся одним из наименее изученных в палеогеографическом отношении регионов. До недавнего времени для южно-таёжной зоны центрального сектора Западной Сибири имелось всего несколько недостаточно хорошо датированных спорово-пыльцевых диаграмм [9]. В последние годы опубликовано еще несколько новых пыльцевых диаграмм для более восточных [10-14] и южных лесостепных районов [15-17]. Предлагаемая работа имеет целью реконструировать долговременные изменения климата и растительности на юге центральной части Западно-Сибирской равнины на основе новых комплексных палинологических и ризоподных исследований торфяных отложений болота Позднеголоценовая динамика растительного покрова 167 Круглое южно-таёжной зоны для выявления природно-климатической обстановки, на фоне которой происходило развитие древних археологических культур Сибири. Материалы и методики исследования На восточной окраине Большого Васюганского болота у пос. Полынянка Томской области изучен спорово-пыльцевым и ризоподным методами изолированный болотный массив болото Круглое (56о53'01,63'' с.ш., 82°34'40,63'' в.д.), расположенное на правобережной террасе р. Бакчар (рис. 1). Современный растительный покров болота представлен сосново-кустарничковосфагновой фацией олиготрофного болота (рослым рямом). Для палеопали-нологических исследований из наиболее глубокой части болотного массива отобран керн торфяных отложений мощностью 140 см. Рис. 1. Карта района исследования в Томской области и расположение болота Круглое [Fig. 1. Map of Tomsk oblast with the area of investigation and location of Krugloe Mire] Из полученного торфяного керна для спорово-пыльцевого анализа образцы отбирались через каждые 5 см объемом 1 см3. Всего отобрано 32 образца. Для выделения спор и пыльцы использовалась щелочная методика Поста и сепарационная методика Гричука [18]. Щелочной методикой обрабатывались торфяные образцы без минеральной примеси. Согласно этой методике образцы помещались в 10% щелочь и нагревались до кипения. Щелочная суспензия каждого образца пропускалась через сито 0,3 мм в литровый стакан, и осадок на сите промывался большим количеством дистиллированной воды до заполнения литрового стакана. Затем стаканы с просеянной суспен- 168 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова зией и растворёнными в воде гуминовыми веществами отстаивались в течение суток для осаждения пыльцы. На следующий день вода сливалась с помощью сифона без взмучивания осадка и добавлялась новая порция воды до заполнения стакана. Процедура повторялась несколько раз до полного удаления гуминовых веществ и обесцвечивания раствора. Нижние образцы исследуемого торфяного керна, загрязнённые минеральными частицами, обрабатывались и щелочной, и сепарационной методиками. Для разделения органики и минеральной части использовалась тяжелая жидкость из смеси равных весовых частей йодистого калия (KI) и йодистого кадмия (CdI2) с добавлением дистиллированной воды до удельного веса 2,3. Очищенный от гумуса, торфяных и минеральных загрязнений осадок собирался с помощью центрифугирования в центрифужные пробирки, освобождался от воды и помещался в глицерин. Для спорово-пыльцевого анализа образец тщательно перемешивался с глицерином. Капля глицериновой суспензии наносилась на предметное стекло, окрашивалась фуксином и накрывалась покровным стеклом. Просмотр и определение пыльцы проводились на световом микроскопе при 400-кратном увеличении. Для определения палиноморф использовались отечественные и зарубежные определители. Из отечественных работ для определения спор папоротникообразных и пыльцы однодольных растений использовалась монография А.Е. Боброва с соавт. [19], для определения пыльцы ряда семейств двудольных растений использовалась монография Л.А. Куприяновой и Л.А. Алёшиной [20]. Определитель пыльцы и спор Му-ура с соавт. [21], построенный не на таксономическом принципе, а на морфологической классификации пыльцевых и споровых зёрен, использовался для определения родовых таксонов в семействах Apiaceae, Asteraceae и ряда морфологических типов пыльцы. В данной работе мы придерживались номенклатуры конвенции EPD (European Pollen Database, Arles, France). Кроме того, для родовых и видовых определений мы использовали собственную обширную коллекцию препаратов пыльцы и спор местной флоры и фотоопределитель, сделанный нами по этой коллекции. В результате спорово-пыльцевого анализа образцов исследуемого торфяного керна получена палинологическая характеристика последних 5320 календарных лет, которая отражает динамику растительного покрова и климата позднего голоцена южно-таёжной зоны восточно-центрального сектора Западно-Сибирской равнины (рис. 3). Пробы для ризоподного анализа готовили при помощи модифицированной стандартной методики [13]. Образцы сырого торфа объемом 2-3 см3 взбалтывали с небольшим количеством воды в пластиковой бутылке в течение 2 мин, чтобы извлечь раковинки амеб из растительных остатков. Затем промывали через сито (размер ячейки 0,355 мм), чтобы отделить крупные волокна торфа. Полученную водную суспензию отстаивали в течение суток, аккуратно сливали избыток воды и доводили объем пробы до 10 мл. Каплю полученной водной суспензии, смешанную с каплей глицерина, анализиро- Позднеголоценовая динамика растительного покрова 169 вали под световым микроскопом при 200-400-кратном увеличении, идентифицировали обнаруженные раковинки амеб и определяли относительное обилие видов. Плотность населения раковинных амеб вычислена в расчете на 1 г воздушно-сухого вещества (в.с.в.) торфа. Для расчетов использованы коэффициенты потери влаги для каждого исследованного слоя торфа, полученные путем взвешивания дополнительных проб торфа в сыром виде и после полного высыхания до воздушно-сухого состояния в комнатных условиях. Реконструкция уровня болотных вод (рис. 4) проведена по данным ризоподного анализа при помощи переходной функции взвешенного осреднения (Weighted Averaging). Использовано две модели трансферной функции: 1) одна модель для слоев верхового торфа (Weighted Averaging (classical); RMSEP = 8,4) и 2) другая модель - для переходного и низинного торфа (Weighted Averaging (classical); RMSEP = 7,1) [11]. Использование разных моделей обусловлено тем, что в болотных местообитаниях с разной трофностью видовой состав комплексов раковинных амеб разный. А те эврибионтные виды раковинных амеб, которые могут населять болотные биотопы с разной трофностью, имеют разные оптимумы по УБВ (уровню болотных вод) на верховых и на переходных и низинных болотах. При спорово-пыльцевом анализе одновременно с определением и подсчетом палиноморф по тем же образцам подсчитывались микроугольки размером 5-100 микрон [22] для оценки распространённости пожаров и определялось число таксонов пыльцы в группе трав [23] для оценки соотношения лесных и безлесных территорий в окрестностях болота. Н.А. Черновой проведен детальный ботанический анализ торфа по общепринятой методике [24] с использованием атласов растительных остатков и определителей [12, 25-27]. Для этого образцы торфа объемом около 2 см3 промывались текучей струей воды на сите с размером ячей 0,3 мм до полного вымывания гуминовых веществ. Промытые таким образом растительные макрофосси-лии, оставшиеся на сите, использовались для изготовления препарата для просмотра под световым микроскопом при увеличении в 100 и 200 раз. Открытый препарат площадью около 36 см2 изготовлялся путём разбавления макрофоссильных остатков водой и окрашивания их метиленовой синью. Просматривалась вся площадь препарата и давалась визуальная оценка в процентах содержанию отдельных макрофоссилий. Методом жидкостной сцинтилляции для разреза получены 2 радиоуглеродные даты в радиоуглеродной лаборатории ИМКЭС СО РАН (табл. 1). С помощью программы Bacon [28-29], использующей статистику Бэйсона для реконструкции истории аккумуляции осадка, соединяющей радиоуглеродные даты с другой имеющейся для разреза информацией, построена глубинно-возрастная модель калиброванного возраста и вычислен календарный возраст каждого образца в разрезе (рис. 2). В программе использована калибровочная кривая IntCal13 [30]. Все дальнейшие палеореконструкции 170 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова для этого разреза сделаны на основе калиброванного (календарного) возраста. Таблица 1 [Table 1] Радиоуглеродные даты торфяного разреза болота Круглое [Radiocarbon dates of the peat section of Krugloe Mire] Глубина от по- Лабораторный номер 14С датировка (лет назад) верхности, см [Depth from the surface, cm] [Laboratory number] [14С dating (years ago)] 48-50 ИМКЭС-14С174 1510±22 138-140 ИМКЭС-14С175 4640±35 По процентным цифровым данным спорово-пыльцевого анализа, с помощью формулы Букреевой, основанной на многомерном статистическом анализе большого количества современных пыльцевых спектров территории Западной Сибири и соответствующих климатических параметров [3132], мы рассчитали интегральный показатель годового количества осадков (в мм/год): Годовое количество осадков = 453 + 0,79*(Pinus sibirica) + + 0,62*(Betula pendula + B.pubescens) - 3,23*(Betula nana) + + 3,6*(Alnus fruticosa) + 1,7*(Picea) + 2,65*(Abies) - 1,75*(Salix). Рис. 2. Глубинно-возрастная модель торфяного разреза болота Круглое, построенная по двум радиоуглеродным датам с помощью модели Bacon [Fig. 2. Depth-age model of Krugloe Mire peat section constructed by two radiocarbon dates using the Bacon model] Позднеголоценовая динамика растительного покрова 171 Данные спорово-пыльцевого анализа, ботанического анализа торфа, ми-кроугольковые данные, индекс биоразнообразия и результаты реконструкции количества осадков заносились в программу Tilia [33], с помощью которой построены спорово-пыльцевая диаграмма со всей сопутствующей информацией (см. рис. 3) и диаграмма распределения видов раковинных амёб (см. рис. 4). Проценты в спорово-пыльцевой диаграмме рассчитывались от суммы пыльцы и спор за вычетом пыльцы и спор водно-болотных растений. Имеющиеся исторические сведения о динамике увлажнённости пояса Великой степи и движении древних народов на территории Сибири за летописный период, суммированные в работе Л.Н. Гумилёва [34], мы наложили на хронологию и палеоэкологические события болота Круглое. Это позволило сопоставить наблюдаемые изменения в растительности и в комплексах раковинных амёб (индикаторов изменения локальных условий увлажнённости болота) с вековой цикличностью изменения увлажнённости в южно-таёжной, лесостепной и степной зонах Западной Сибири, отмечаемой по археологическим и летописным данным, использовавшимся Л.Н. Гумилёвым. Результаты исследования и обсуждение Для реконструкции сложной картины развития болотного массива и окружающей растительности под действием долговременных эндогенных (саморазвитие болотного массива) и экзогенных (глобальных климатических) факторов результаты спорово-пыльцевого анализа, ботанического анализа торфа, микроуголькового анализа, показатель изменения видового состава трав, реконструированное по пыльцевым данным годовое количество осадков, данные анализа комплексов раковинных амёб и реконструированный по ним уровень болотных вод мы представили в виде диаграмм и графиков на равномерной глубинно-возрастной шкале (рис. 3-5). Сопоставление палинологических, микроугольковых и макрофоссиль-ных данных (см. рис. 3) позволило выявить основные этапы в развитии регионального растительного покрова (по палинологическим данным), локальной болотной растительности (по данным ботанического анализа торфа и локальным компонентам пыльцевого спектра). Изменения локальных условий обитания на уровне микрорельефа индицированы по комплексам раковинных амёб (см. рис. 4). В целом выявлена ведущая роль эндогенного фактора в развитии изолированного болотного массива, наложившего отпечаток как на локальные спорово-пыльцевые спектры, так и на плотность сообществ и видовое богатство комплексов раковинных амёб. За время торфонакопления, продолжавшееся около 5150 лет, болото в своём развитии прошло 3 стадии эндогенного развития: эвтрофную, мезотрофную и олиготрофную. Эвтрофное осоково-хвощёвое (торфяная залежь на глубине 135-90 см), а затем осоковое болото с берёзовым древостоем (глубина торфяного слоя 90-75 см) 172 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова существовало примерно с 5150 до 2600 л.н. Мезотрофная, пушицево-сфагновая фация существовала на болоте примерно от 2600 по 1340 л.н. (см. рис. 3). После 1340 л.н. болото перешло в олиготрофную (верховую) стадию развития с доминированием сосново-кустарничково-сфагновой растительности фации рослого ряма. Культурные,сорныс и κcqιoφHTbi [Anthropogenic Рис. 3. Процентная спорово-пыльцевая диаграмма торфяного разреза болота Круглое. Symbols: 1 - сфагновые мхи (а - Sphagnum fuscum; b - Sph. magellanicum; c - Sph. warn-storfii; d - Sph. centrale); 2 - болотные кустарнички; 3 - остатки сосны; 4 - пушица; 5 - осоки; 6 - остатки древесины берёзы; 7 - гипновые мхи; 8 - хвощ; 9 -неопределённые остатки трав; 10 - Polytrichum. Диаграмма построена на равномерной временной шкале с помощью программ Bacon и Tilia. По оси х -процент обилия таксонов пыльцы и спор. По оси y возраст в календарных годах считая от 1950 г. Микроугольки даны в процентах от суммы пыльцы и спор без водно-болотных таксонов [Fig. 3. Percent spore-pollen diagram of the peat section of Krugloe Mire. Symbols: 1 - Sphagnum (a - Sphagnum fuscum; b - Sph. magellanicum; c - Sph. warnstorfii; d - Sph. centrale); 2 - dwarf shrubs; 3 - pine remnants; 4 - cotton grass; 5 - sedges; 6 - birch remnants; 7 - Hipnaceae; 8 - horsetail; 9 - undetermined herbal remnants; 10 - Polytrichum. On the X-axis - Percentage of palynomorphs; on the Y-axis - Age in cal. yrs BP starting from 1950. Charcoal is in % from the pollen sum without water and mire plants] На спорово-пыльцевой диаграмме по доминирующим пыльцевым комплексам и характерным пыльцевым типам, включающим как региональные, так и локальные компоненты пыльцевого спектра, мы выделили 9 спорово-пыльцевых зон (см. рис. 3). Каждая спорово-пыльцевая зона отражает соответствующую фазу в развитии локальной и региональной растительности (табл. 2). В 22 образцах торфа из колонки болота Круглое обнаружено 30 видов и внутривидовых таксонов раковинных амеб (см. рис. 4). Среди них наибольшего относительного обилия достигали два вида: Schoenbornia humicola и Trinema lineare. Первый из этих видов предпочитает условия средней обвод- ПозДнеголоценовая Динамика растительного покрова 173 ненности на болотах, а второй вид встречается очень часто в широком спектре болотных местообитаний. Плотность населения раковинных амеб значительно варьировала по глубине торфяных отложений (1 775 ± 2 228 тыс. экз./г в.с.в., среднее арифметическое и стандартное отклонение). В образцах торфа ствовали. на глубинах 93-100, 108-140 см раковинки амеб отсут- Рис. 4. Распределение видов раковинных амеб по глубине торфяных отложений болота Круглое и результаты реконструкции уровня болотных вод. Представлены виды с относительным обилием не менее 5%. Серым цветом обозначены слои торфа, в которых раковинки амеб не обнаружены [Fig. 4. Distribution of testate amoebae species in the peat deposits of Krugloe mire and the results of reconstructed water-table depth values. Only species with relative abundance more than 5% are shown. Peat layers without remains of testate amoebae are marked in grey] Представленная ниже реконструкция динамики растительности и климата основана на совместном анализе палинологических, макрофоссильных (ботанического состава торфа), ризоподных (комплексов раковинных амёб) и микроугольковых данных, а также рассчитанных по ним интегральных показателей годового количества осадков и уровня стояния болотных вод (см. рис. 3-5; табл. 2). До начала заболачивания, т.е. с 5320 до 5240 л.н. (пыльцевая зона 1), когда накапливался минеральный осадок, подстилающий самый нижний торф, климат был засушливым, и в растительном покрове района исследования могла существовать разнотравно-полынная степь, судя по обилию пыльцы полыни. С конца шестого тысячелетия назад, в пятом и почти до конца четвёртого тысячелетия назад (пыльцевые зоны 2, 3, и большая часть зоны 4, 5240-3130 л.н.) 174 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова во всех спорово-пыльцевых спектрах изучаемого разреза доминирующим компонентом являлась пыльца берёзы как древовидных видов (Betula pen-dula, B. pubescens), так и кустарничковая (B. nana). Очень малое обилие пыльцы сосны и кедра, характерное для этого периода, указывает на её дальнезаносное происхождение и отсутствие этих древесных видов в окружающих лесах. Кроме того, для этого периода отмечено повышенное видовое разнообразие пыльцы трав, в составе которых относительно много пыльцы василистника (Thalictrum), встречено 2 пыльцевых зерна ковыля (Stipa sp.) и 1 пыльцевое зерно эфедры (Ephedra distachia). Всё это свидетельствует о сдвиге зоны берёзовой лесостепи к северу вследствие, вероятно, более аридного климата, существовавшего с начала торфонакопления до 3130 л.н. Климат в это время был теплее и суше современного, хотя реконструкции количества осадков показывают весьма неустойчивое увлажнение региона. Неустойчивое увлажнение в целом характерно для лесостепной зоны. На болоте были распространены хвощево-осоковые сообщества с куртинами зелёных мхов и эвтрофных видов сфагнума. Хотя первые комплексы раковинных амёб были выявлены уже в эвтрофных торфах на глубине 100-110 см, однако в конце эвтрофной стадии - начале мезотрофной стадии раковинные амёбы исчезают. Возможно, что обилие микроугольков на этой глубине (93 см, 3390 л.н.) свидетельствует о пожарах на болоте, которые могли повлиять на сохранность раковинок. Первая половина третьего тысячелетия назад (пыльцевая зона 5, 31302380 л.н.) ознаменовалась распространением в окружающих ландшафтах кедра, пихты, сосны и снижением роли берёзы. Сосна, вероятнее всего, стала распространяться на соседних отрогах Большого Васюганского Болота, достигших олиготрофной стадии развития. На болоте Круглое в это время (в период с 3040 по 2820 л.н.) произошли кардинальные изменения растительного покрова, в результате которых оно заросло берёзовым древостоем. Эти изменения были связаны с постепенным переходом болотного массива к ме-зотрофной стадии развития вследствие заполнения торфом всего понижения в рельефе. В водном питании болота значительно меньшую роль стали играть поверхностно-сточные воды, что вызвало частичное обсыхание эвтрофных топяных сообществ и зарастание его берёзовым древостоем с формированием пограничного горизонта осоково-пушицево-древесного торфа, сформировавшегося на границе четвёртого и третьего тысячелетий назад. Исторические свидетельства [34] указывают на увлажнение Великой степи, имевшее место в X в. до н. э. (граница четвёртого и третьего тысячелетий назад). В этот период, по данным Л.Н. Гумилёва, влагоносные циклоны сместились на юг, а в таёжной зоне количество выпадающих осадков уменьшилось. Таким образом, резкая смена открытого осокового болота на облесенное на рубеже четвёртого и третьего тысячелетий обусловлена как эндогенным саморазвитием болотного массива, приведшим к переходу в мезотрофную стадию развития, так и уменьшением обилия осадков к северу от степной зоны. Интересно, что Позднеголоценовая динамика растительного покрова 175 индикаторы локальных условий (ботанический состав торфа и уровень болотных вод, рассчитанный по комплексам раковинных амёб) указывают на более сухие условия на болоте (см. рис. 3-4), а пыльцевые данные и рассчитанное по ним годовое количество осадков отражают увеличение годового обилия осадков (см. рис. 3). Это кажущееся противоречие вполне объяснимо, если учесть роль локальных и региональных компонентов в общей картине рассматриваемых индикаторов. Годовое количество осадков рассчитано на основе пыльцы деревьев, которая может попадать на болото с довольно обширной территории, включая более южную лесостепь, где имело место увлажнение климата и расширение лесных участков. Ботанический же состав торфа и комплексы раковинных амёб отразили исключительно локальные условия болотного массива южно-таёжной зоны, которые стали суше. Таблица 2 [Table 2] Пыльцевые зоны, их глубина, возраст и доминантные типы пыльцы среди региональных и локальных компонентов пыльцевого спектра [Pollen zones, their depth, age and dominant taxa among regional and local components of spore-pollen spectra] № пыль цевой зоны (снизу вверх) [Pollen zone (bottom upwards)] Глубина в разрезе, см [Depth, cm] Пыльцевая зона [Pollen zone] Доминанты среди локальных компонентов с.п.с.1 [Dominant local components] Возраст (кал. лет назад)2 [Age cal. yr.BP] Округлённый возраст (кал. лет назад) [Rounded age] 1 140-135 Зона полыни, ивы и сосны [Zone of Artemisia, Salix and Pinus sylvestris] Plantago, Thallictrum 5317,8 5234,2 5320-5240 2 135-120 Зона берёзы и сосны [Zone of Betula pendula and Pinus sylvestris] Carex, Bryales 5234,2-4577 5240-4580 3 120-112 Зона берёзы [Zone of Betula pendula] Betula nana 4577-4224,8 4580-4230 4 112-87 Зона берёзы и сосны [Zone of Betula pendula and Pinus sylvestris] Bryales 4224,8 3122,9 4230-3130 5 87-70 Зона берёзы, сосны и кедра [Zone of Betula pendula, Pinus sylvestris and Pinus sibirica] Sphagnum, Ericaceae 3122,9 2372,9 3130-2380 6 70-45 Зона сосны, берёзы и кедра [Zone of Pinus sylvestris, Betula pendula and Pinus sibirica] Sphagnum, Ericaceae 2372,9 1332,4 2380-1340 7 45-30 Зона кедра, сосны и берёзы [Zone of Pinus sibirica, Pinus sylvestris and Betula pendula] Sphagnum 1332,4 872,5 1340-880 176 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова Окончание табл. 2 [Table 2 (end)] № пыльцевой зоны (снизу вверх) [Pollen zone (bottom upwards)] Глубина в разрезе, см [Depth, cm] Пыльцевая зона [Pollen zone] Доминанты среди локальных компонентов с.п.с.1 [Dominant local components] Возраст (кал. лет назад)2 [Age cal. yr.BP] Округлённый возраст (кал. лет назад) [Rounded age] 8 30-10 Зона сосны и берёзы с резким спадом обилия пыльцы кедра [Zone of Pinus sylvestris and Betula pendula with decrease of Pinus sibirica] Artemisia, Ericaceae, резкое сокращение обилия Sphagnum [a sharp decline in the abundance of Sphagnum] 872,1-252,1 880-260 9 10-5 Зона сосн^і. [Zone of Pinus sylvestris] Betula nana 252,1-н/в 260-н/в Примечание. 1 - сиорово-пыльневые спектры; 2 - календарных лет назад, оригинальные расчеты по Бэкон. [Note. 1 - Spore-pollen spectra; 2 - Calibrated years before present according to Bacon]. С середины третьего тысячелетия назад (пыльцевая зона 6, 23801340 л.н.) климат стал еще влажнее. Об этом свидетельствует увеличение роли темнохвойных пород (кедра и пихты) в лесных сообществах, что подтверждается палинологическими данными болота Круглое (см. рис. 3). Вероятно, вследствие некоторого увлажнения климата в таёжной зоне на исследуемом болоте распространилась пушицевая топь (2640-2380 л.н.), что привело к гибели болотного берёзового древостоя, существовавшего ранее. Летописные свидетельства [34] говорят о засухе в Великой степи в V в. до н. э., так как в это время циклоны сместились к северу. Вероятно, этот влажный климатический этап стимулировал развитие на болоте пушицевых топяных сообществ, а территория этого региона покрылась сомкнутыми южно-таёжными лесами, в которых доминировали берёзово-кедровые древостои с участием пихты и ели. Сосна распространилась на болоте. Однако начавшееся увлажнение климата еще не было стабильным. Об этом свидетельствует реконструкция по комплексам раковинных амёб (см. рис. 4, 5), отражающая низкое стояние уровня болотных вод. Период с конца третьего тысячелетия назад до начала второго тысячелетия известен в палеогеографии как период «Римского потепления климата». На нашей пыльцевой диаграмме в это время отмечается некоторое увеличение видового разнообразия пыльцы трав, что, вероятно, отражает благоприятные условия для развития луговых степей. На фоне повышенного обилия пыльцы берёзы возрастает обилие пыльцы темнохвойных пород ели, пихты, кедра. Данная структура пыльцевых спектров отражает распространение южно-таёжных сосново-кедрово-берёзовых лесов с лес- Позднеголоценовая динамика растительного покрова 177 ными лугами, участками луговых степей и «ленточными» темнохвойными лесами в поймах рек. С IV по I в. н. э. исторические свидетельства говорят об оптимальном увлажнении Великой степи [34]. В этот период атлантические циклоны максимально продвигались на восток и юго-восток. Лесная же зона вновь стала испытывать недостаточное увлажнение. На болоте Круглое пушицевые топи сменились на мезотрофно-олиготрофные кустарничково-сфагновые сообщества с доминированием Sphagnum magellanicum. Для этого времени оба интегральных показателя - и реконструированное годовое количество осадков, и уровень болотных вод - свидетельствуют о более сухих условиях (см. рис. 3-5). Во II-III вв. н. э. сильнейшая засуха поразила Великую степь [34] из-за того, что атлантические циклоны сместились к северу в таёжную зону. В результате этого уровень Каспийского моря повысился (так как оно питается реками, текущими с севера из таёжной зоны), Аральское озеро обмелело настолько, что превратилось в Оксийское болото, а Балхаш высох полностью. На это перераспределение влаги из степей в таёжную зону болото Круглое отреагировало новым распространением пушицевых топей (1940-1510 л.н.), а в таёжных лесах вновь усилилась роль пихты. Вероятно, увлажнение локальных условий на болоте благоприятствовало вспышкам плотности сообществ раковинных амёб, среди которых доминировали виды рода Cryptodifflugia (см. рис. 4). Таким образом, полученные нами комплексные палеоэкологические данные торфяного разреза с болота Круглое (палинологические, ризопод-ные, данные ботанического состава торфа) убедительно свидетельствуют о гетерохронности и даже противофазности периодов увлажнения и аридиза-ции степной и лесной зон, подтверждая гипотезу, выдвинутую российскими исследователями в середине прошлого столетия [35-36] и находящую все больше доказательств в новейших палеогеографических исследованиях на территории Евразии [37]. На рубеже второго и первого тысячелетий назад наступил новый период в развитии ландшафта на юге Западной Сибири (пыльцевая зона 7, 1340-880 л.н.), основной чертой которого было максимальное, за весь изученный период, распространение кедровых лесов. Это прослеживается по пыльцевым данным нескольких изученных этим методом отложений [10]. Оно сопровождалось также большим распространением ели и сокращением пихты. Одновременно, около 1340 л.н., болото Круглое перешло в олиготрофную стадию развития, и в его растительном покрове стала доминировать сосново-кустарничково-сфагновая болотная фация ряма. Это просматривается как по ботаническому составу торфа, так и по составу локальных компонентов спорово-пыльцевых спектров, в которых отмечено повышенное содержание пыльцы эрикоидных кустарничков и спор сфагнума (см. рис. 3). В составе древесного пыльцевого спектра стала доминировать пыльца сосны лесной. Надо отметить, что распространению сфагновых мхов предшествовало уве- 178 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова личение роли кедра в окружающих лесах, что указывает на увлажнение климата. Вероятно, усиление роли темнохвойных пород в лесах происходило за счет увеличения влажности климата во время «средневекового потепления климата». Но если это было потепление в Европе, то в Западной Сибири оно проявилось не как потепление, а как в основном увлажнение климата. На это указывает реконструированное годовое количество осадков (см. рис. 3, 5). Однако повышение уровня болотных вод произошло примерно на 350 лет позднее (см. рис. 5). Такое запаздывание реакции комплексов раковинных амёб может быть объяснено тем, что эти индикаторы отразили исключительно локальные условия болотного массива, расположенного в южно-таёжной зоне, а спорово-пыльцевые спектры в силу большей региональности этого индикатора зафиксировали более раннее начало влажного интервала в южнее расположенной лесостепной зоне. Осадки, мм/год [Precipitation, mm/yr] Уровень болотных вод, см [Depth of mire waters] Пыльцевые зоны [Pollen zones] Рис. 5. Сопоставление реконструкций уровня болотных вод, рассчитанного по комплексам раковинных амеб, и годового количества осадков, рассчитанного по составу древесной пыльцы из болота Круглое Условные обозначения: 1 - более сухой климат; 2 - более влажный климат [Fig. 5. Comparison of water-table depth reconstructions based on testate amoebae with reconstructed annual precipitation based on pollen data from Krugloe mire. Symbols: 1 - More arid climate; 2 - More humid climate] 1 2 ПозДнеголоценовая Динамика растительного покрова 179 Хотя переход из мезотрофной стадии в олиготрофную является естественным явлением в эндогенном развитии болотного массива, в случае болота Круглое смена пушицевых топей сфагновым рямом произошла очень быстро, почти катастрофически. Возможно, с резкой сменой доминантов в растительном покрове болота связана и смена доминанта в комплексах раковинных амёб с вида Schoenbornia humicola на вид Trinema lineare. Реконструкция годового количества осадков на основе данных пыльцевого анализа показывает высокую влажность климата в этот период. Исторические свидетельства [34] говорят о том, что с VI по XII в. н. э. Великая степная зона Евразии была достаточно увлажнена, за исключением предшествующего сухого эпизода в 491 г. (V в. н. э.) и в X-XI вв. н. э. Эти краткие, хотя, возможно, и резкие, вековые эпизоды аридизации климата не отразились ни на южно-таёжной растительности, ни на локальной болотной растительности болота Круглое. Вероятно, они полностью компенсировались сформировавшейся буферной системой олиготрофного болота и таёжной растительности. Сообщества раковинных амёб, отличающиеся высокой чувствительностью к любым, даже кратковременным изменениям условий водного режима, отреагировали на эпизод увлажнения климата средневековья резким увеличением плотности сообществ (см. рис. 4). Реконструкция уровня болотных вод для этого периода указывает на высокое, хотя и неустойчивое их стояние (см. рис. 5). В так называемый малый ледниковый период (600-180 л.н.), приходящийся на пыльцевую зону 8 (880-260 л.н.) и частично на пыльцевую зону 9 (260 л.н. -современность) на диаграмме болота Круглое, отмечено увеличение обилия пыльцы полыней. Пыльца полыни является индикатором континентальных степей. Её обилие особенно высоко в спорово-пыльцевых спектрах степных районов Казахстана, Тувы и Монголии. Поскольку пыльца полыни может переноситься на очень дальние расстояния, возможно, максимумы пыльцы полыни в нашей пыльцевой диаграмме отражают глобальное увеличение роли степной растительности в регионе вследствие увеличения континентальности климата в центральных районах Евразии. Альтернативная гипотеза может указывать на начавшееся антропогенное влияние на растительный покров, в результате которого на изучаемой территории стали сокращаться площади кедровых лесов и распространились сорные виды полыней и крапива. Более аридные условия во вторую половину малого ледникового периода отмечены как по пыльце, так и по комплексам раковинных амёб (см. рис. 5). Существенное снижение роли кедра, пихты и ели на исследуемой территории произошло около 800 л. н. С этого времени и по настоящее время в спорово-пыльцевых спектрах болота Круглое стала доминировать пыльца сосны лесной. Возможными причинами резкого увеличения роли сосны в ландшафте может быть как антропогенное влияние, так и расширение заболоченных территорий, покрытых олиготрофными болотами. Интерпретация микроугольковых Данных. Содержание микроугольков в торфе максимально в нижних слоях торфа, синхронных пыльцевым зонам 180 Т.А. Бляхарчук, И.В. Курьина, Н.Н. Пологова 2 и 4. Вероятно, обилие микроугольков в значительной степени обусловлено влиянием пожаров на молодой болотный массив с мощностью торфа менее 45 см. На сильное влияние локальных пожаров в этот период указывает совпадение обилия микроугольков с максимумами обилия спор гипновых мхов. Возможно, что вспышки спороношения гипновых мхов как-то стимулировались низовыми пожарами. Однако данное предположение требует специальных экологических исследований. О влиянии послепожарных растительных сообществ на пыльцевые спектры может свидетельствовать и синхронное микроуголькам увеличение обилия пыльцы полыни (Artemisia), злаков (Poaceae), крапивы (Urtica), лабазника (Filipendula) и василистника (Thalictrum). Однако мы имеем основание для предположения о том, что на увеличение частоты пожаров в этот начальный период развития болота влиял и более аридный климат. Так, реконструкция годового количества осадков на основе соотношения пыльцы деревьев указывает на то, что осадков выпадало почти на 50 мм/год меньше, чем в последующий влажный период (см. рис. 3, 5). Кроме того, в краткий влажный период 4300-4400 л.н., синхронный пыльцевой зоне 3, микроугольки практически отсутствовал

Ключевые слова

Западная Сибирь, спорово-пыльцевой анализ, раковинные амебы, климатические изменения, Большое Васюганское болото, история растительности, West Siberia, pollen analysis, testate amoebae, climatic changes, Great Vasyugan Mire, history of vegetation

Авторы

ФИООрганизацияДополнительноE-mail
Бляхарчук Татьяна АртемьевнаИнститут мониторинга климатических и экологических систем СО РАНд-р биол. наук, в.н.с. лаборатории мониторинга лесных экосистемblyakharchuk@mail.ru
Курьина Ирина ВладимировнаИнститут мониторинга климатических и экологических систем СО РАНканд. биол. наук, н.с. лаборатории мониторинга лесных экосистемirina.kuryina@yandex.ru
Пологова Нина НиколаевнаИнститут мониторинга климатических и экологических систем СО РАНканд. биол. наук, в.н.с. лаборатории мониторинга лесных экосистем
Всего: 3

Ссылки

IPCC, 2013. Climate Change 2013: The Physical Science Basis // Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.). Cambridge, United Kingdom and New York, NY, USA : Cambridge University Press, 2014. 27 p. URL: http://www.climatechange2013.org (accessed: 21.05.2018).
Кац Н.Я., Кац С.В. О позднечетвертичной истории ландшафтов южной части Западной Сибири // Почвоведение. 1949. № 8. С. 441-456.
MacDonald G.M., Velichko A.A., Kremenetski C.V., Borisova O.K., Gol'eva A.A., Andreev A.A., Gwynar L.C., Riding R.T., Forman S.L., Edwards T.W.D., Araven R., Hammalund D., Szeicz J.M., Gattaulin V. Holocene Treeline History and Climate Change Across Northern Eurasia // Quaternary Research. 2000. № 53. PP. 302-311.
Тимошок Е.Е., Филимонова Е.О., Пропастилова О.Ю. Структура и формирование деревьев в экотоне верхней границы древесной растительности Северо-Чуйского хребта // Экология. 2009. № 3. С. 189-194
Соловьёва В.В. Что такое «экотон» // Самарский научный вестник. 2014. № 2 (7). C. 116-119
Пьявченко Н.И. О возрасте торфяников и сменах растительности на юге Западной Сибири в голоцене // Бюллетень комиссии по изучению четвертичного периода. 1983. № 52. С. 164-170
Dyukarev A.G., Pologova N.N. Soil-geographical zoning of the Tomsk Oblast // Eurasian Soil Science. 2002. № 35 (3). PP. 248-257.
Kulizhsky S.P., Loiko S.V., Konstantinov A.O., Kritskov I.V., Istigechev G.L., Lim AG., Kuzmina D.M. Lithological sequence of soil formation on the low terraces of the Ob and the Tom rivers in the south of Tomsk Oblast // International Journal of Environmental studies. 2015. Vol. 72, № 6. PP. 1037-1046. doi: 10.1080/00207233.2015,1039346
Хотинский Н.А. Голоцен Северной Евразии. М. : Наука, 1977. 199 с.
Blyakharchuk T.A. Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberian Lowland // The Holocene. 2003. № 13 (5). PP. 715-731.
Бляхарчук Т.А. Новые палеопалинологические данные о динамике растительного покрова Западной Сибири и прилегающих территорий в голоцене. Новосибирск : ГЕО, 2012. 139 с.
Кац Н.Я., Кац С.В., Скобеева Е.И. Атлас растительных остатков в торфах. М. : Недра, 1977. 370 с.
Kurina I.V., Li H. Why do testate amoeba optima related to water table depth vary? // Microbial Ecology, 2018. URL: http://link.springer.com/article/10.1007/s00248-018-1202-4 (accessed: 20.05.2018). doi: 10.1007/s00248-018-1202-4
Борисова О.К., Зеликсон Э.М., Кременецкий К.В., Новенко Е.Ю. Ландшафтноклиматические изменения в Западной Сибири в позднеледниковье и голоцене в свете новых палинологических данных // Известия РАН. Серия географическая. 2005. № 6. С. 38-49
Левина Т.П., Орлова Л.А., Панычев В.А., Пономарёва Е.А. Радиохронология и пыльцевая стратиграфия голоценового торфяника Каякское Займище (Барабинская лесостепь) // Региональная геохронология Сибири и Дальнего Востока. Новосибирск : Наука, 1987. С. 136-143
Rudaya N., Nazarova L., Nourgaliev D., Papin D., Frolova L. Mid-Holocene environmental history of Kulunda, southern West-Siberia vegetation, climate and humans // Quaternary Science Reviews. 2012. № 48. PP. 32-42. doi: 10.1016/j.quascirev.2012.06.002
Krivonogov S.K., Takahara H., Yamamuro M., Preis Y.I., Khazina I.V., Khazin L.B., Kuzmin Y.V., Safonova I.Y., Ignatova N.V. Regional to local environmental changes in southern Western Siberia: Evidence from biotic records of mid to late Holocene sediments of Lake Beloye // Palaeogeography, Palaeoclimatology, Palaeoecology. 2012. № 331-332. PP. 177-193. doi: 10.1016/j.palaeo.2011.09.013
Гричук В.П., Заклинская Е.Д. Анализ ископаемой пыльцы и спор и его применение в палеогеографии. М. : Географиздат, 1948. 223 с.
Бобров А.Е., Куприянова Л.А., Литвинцева И.Д., Тарасевич В.Ф. Споры папоротникообразных и пыльца голосеменных и однодольных растений флоры европейской части СССР. Л. : Наука, 1983. 208 с.
Куприянова Л.А., Алёшина Л.А. Пыльца двудольных растений флоры европейской части СССР. Л. : Наука, 1978. 184 с.
Moore P.D., Webb J.A., Collinson M.E. Pollen Analysis, second ed. Oxford : Blackwell Scientific, 1991. 216 p.
Patterson W.A., Edwards L.J., Maguire D.J. Microscopic charcoal as a fossil indicator of fire // Quaternary Science Reviews. 1987. № 6. PP. 3-23.
Бляхарчук Т.А. Отражение ботанического биоразнообразия в поверхностных споровопыльцевых спектрах гор Южной Сибири // Биоразнообразие и сохранение генофонда флоры, фауны и народонаселения Центрально-Азиатского региона : материалы 10-й Международной научно-практической конференции 26-29 сентября 2007 г. Кызыл : Изд-во Тувинского государственного университета, 2007. C. 30-32.
Куликова Г.Г. Краткое пособие к ботаническому анализу торфа. М. : Недра, 1974. 94 с.
Домбровская А.В., Коренева М.М., Тюремнов С.Н. Атлас растительных остатков, встречающихся в торфе. М. ; Л. : Госэнергоиздат, 1959. 137 с
Савич-Любицкая Л.И., Смирнова З.Н. Определитель сфагновых мхов СССР. Л. : Наука, 1968. 112 с
Мульдияров Е.Я. Определитель листостебельных мхов Томской области : учеб. пособие. Томск: Изд-во Томского университета, 1990. 208 с
Christen J.A., Perez E.S. A new robust statistical model for radiocarbon data // Radiocarbon. 2010. № 51. PP. 1047-1059.
Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. № 6. PP. 457-474. doi: 10.1214/11-BA618
Reimer P.J., Bard E., Bayliss A., Beck J.W. and all IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 yr cal BP // Radiocarbon. 2013. № 55(4). PP. 1869-1887. doi: 10.2458/azu_js_rc.55.16947
Букреева Г.Ф., Архипов С.А., Волкова В.С., Орлова Л.А. Климат Западной Сибири в прошлом и в будущем // Геология и геофизика. 1995. № 36 (11). С. 3-22.
Bukreeva G.F. Pattern recognition many-dimensional analysis for palaeogeographic reconstruction of Holocene // Acta Palaeobotanica. 1991. № 31. PP. 289-294.
Grimm E.C. TGView Vеrsion 2.0.2. Springfield : Illinois State Museum research and Collections Center, 2004.
Гумилёв Л.Н. Тысячелетие вокруг Каспия. М. : Мишель и К°, 1993. 336 с.
Гумилёв Л.Н. Гетерохронность увлажнения Евразии в древности (ландшафт и этнос: IV) // Вестник ЛГУ. 1966. № 6. С. 64-71.
Абросов В.Н. Гетерохронность периодов повышенного увлажнения гумидной и аридной зон // Известия ВГО. 1962. № 4. URL: http://www.gumilevica.kulichki.net/ matter/Article25.htm (дата обращения: 29.05.2018).
Chen J.H., Chen F.H., Feng S., Huang W., Liu J.B., Zhou A.F. Hydroclimatic change in China and surroundings during the medieval climate anomaly and Little ice age: spatial pattern and possible mechanisms // Quaternary Science Reviews. 2015. № 107. PP. 98-111. doi: 10.1016/j.quascirev.2014.10.012
 Позднеголоценовая динамика растительного покрова и увлажнённости климата юго-восточного сектора Западно-Сибирской равнины по данным палинологического и ризоподного исследований торфяных отложений | Вестн. Том. гос. ун-та. Биология. 2019. №  45 . DOI:  10.17223/19988591/45/9

Позднеголоценовая динамика растительного покрова и увлажнённости климата юго-восточного сектора Западно-Сибирской равнины по данным палинологического и ризоподного исследований торфяных отложений | Вестн. Том. гос. ун-та. Биология. 2019. № 45 . DOI: 10.17223/19988591/45/9