ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРИКЛАДНОЙ ДИСКРЕТНОЙ МАТЕМАТИКИ

DOI 10.17223/20710410/17/1

УДК 519.7

ЛИНЕЙНАЯ СЛОЖНОСТЬ ОБОБЩЁННЫХ ЦИКЛОТОМИЧЕСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ С ПЕРИОДОМ $2^m p^n$

В. А. Едемский, О. В. Антонова

Новгородский государственный университет, г. Великий Новгород, Россия

E-mail: Vladimir.Edemsky@novsu.ru

Предлагается метод анализа линейной сложности обобщённых циклотомических последовательностей с периодом 2^mp^n , позволяющий выделять последовательности с высокой линейной сложностью. Вычисляется линейная сложность ряда последовательностей на основе классов квадратичных и биквадратичных вычетов.

Ключевые слова: обобщённые циклотомические последовательности, линейная сложность.

Введение

Линейная сложность бинарной последовательности является важным показателем её качества и определяется как длина самого короткого линейного регистра сдвига с обратной связью, который может воссоздать последовательность, т.е. если $X = \{x_i : i = 0, 1, \ldots\}$ — последовательность с периодом N над полем $\mathrm{GF}(2)$, то её линейная сложность определяется как наименьшее натуральное L, для которого существуют константы $c_1, \ldots, c_L \in \mathrm{GF}(2)$, такие, что $x_i = c_1 x_{i-1} + c_2 x_{i-2} + \ldots + c_L x_{i-L}$ для всех $i, L \leqslant i < N$ [1]. Последовательности, обладающие высокой линейной сложностью, важны для криптографических приложений. Известны алгоритмы определения линейной сложности последовательности, например алгоритм Берлекэмпа — Месси [1]. В то же время для ряда периодических последовательностей, сформированных на основе классов степенных вычетов, линейная сложность определяется видом периода последовательности [2].

Построение последовательностей на основе классов степенных вычетов (циклотомических классов) по модулю N является одним из широко применяемых методов выработки последовательностей. Такие последовательности называются обобщёнными циклотомическими, если N составное [2]. В настоящей работе предлагается метод анализа линейной сложности ряда обобщённых циклотомических последовательностей с периодом $N=2^mp^n$, где p— нечётное простое число, а m,n— натуральные числа. Вычисляется линейная сложность последовательностей на основе классов квадратичных и биквадратичных вычетов. Приведённые примеры показывают, что разработанный метод позволяет выделять последовательности с высокой линейной сложностью. Ранее линейная сложность отдельных последовательностей на основе классов квадратичных вычетов с периодом $2p^n$ и биквадратичных вычетов с периодом 2p исследовалась в [3-6].

1. Основные определения

Пусть p— нечётное простое число и d— натуральный делитель $p-1, d \geqslant 2$. Хорошо известно, что всегда существует первообразный корень θ по модулю p^n [7]. Обозначим через $H_0 = \{\theta^{td} \bmod p^n : t = 0, \dots, p^{n-1}(p-1)/d-1\}$ класс вычетов степени d по модулю p^n . Если A— подмножество \mathbb{Z}_{p^n} , то через tA будем обозначать множество $tA = \{ta \bmod p^n : a \in A\}$, где $t \in \mathbb{Z}$.

Пусть $H_k = \theta^k H_0$ для $k = 0, 1, \dots, d-1$. Классы вычетов H_k образуют разбиение множества обратимых элементов кольца \mathbb{Z}_{p^n} и являются обобщёнными циклотомическими классами.

Положим $C_k = \bigcup_{j=0}^{n-1} p^j H_k$, тогда

$$\mathbb{Z}_{p^n} = \bigcup_{k=0}^{d-1} C_k \cup \{0\}. \tag{1}$$

Кольцо классов вычетов \mathbb{Z}_N , $N=2^mp^n$, изоморфно прямому произведению $\mathbb{Z}_{2^m}\otimes\mathbb{Z}_{p^n}$ относительно изоморфизма $\varphi(a)=(a\bmod 2^m,a\bmod p^n)$ [7]. Пусть $H_{l,k}=\varphi^{-1}\left(\{l\}\otimes C_k\right)$ для $l=0,1,\ldots,2^m-1,\ k=0,1,\ldots,d-1,$ тогда, согласно (1), справедливо разбиение

$$\mathbb{Z}_N = \bigcup_{l=0}^{2^m-1} \bigcup_{k=0}^{d-1} H_{l,k} \cup \{0, p^n, \dots, (2^m-1)p^n\}.$$

Цель работы заключается в исследовании линейной сложности характеристических последовательностей различных объединений классов вычетов $H_{l,k}$. Для каждого $l=0,1,\ldots,2^m-1$ зададим I_l —подмножества индексов, элементы которых могут принимать значения от 0 до d-1, то есть $I_l\subset\{0,1,\ldots,d-1\}$. Введем множество $C=\bigcup_{l=0}^{2^m-1}\bigcup_{k\in I_l}H_{l,k}\cup\{0,2p^n,\ldots,(2^m-2)p^n\}$ и рассмотрим последовательность X, определяемую следующим образом:

$$x_i = \begin{cases} 1, \text{ если } i \bmod N \in C, \\ 0 \text{ иначе.} \end{cases}$$
 (2)

Так как, согласно определению, $x_i = x_{i \bmod N}$, то N является периодом последовательности X.

Далее рассмотрим метод вычисления линейной сложности последовательностей, определяемых формулой (2), и проиллюстрируем его на примерах.

2. Метод анализа линейной сложности последовательностей с периодом $2^m p^n$

Хорошо известно (см., например, [1]), что если S(t) — производящая функция цикла последовательности, то есть $S(t) = x_0 + x_1 t + \ldots + x_{N-1} t^{N-1}$, $S(t) \in \mathrm{GF}(2)[t]$, то её минимальный многочлен m(t) и линейную сложность L можно определить по следующим формулам:

$$m(t) = (t^N - 1)/\text{HO} \square (t^N - 1, S(t)), \quad L = N - \text{deg}[\text{HO} \square (t^N - 1, S(t))].$$
 (3)

В нашем случае, в кольце GF(2)[t], справедливо разложение $t^{2^mp^n}-1=(t^{p^n}-1)^{2^m}$, то есть

$$L = N - \deg[HOД((t^{p^n} - 1)^{2^m}, S(t))].$$
 (4)

Обозначим через α примитивный корень степени p^n из единицы в расширении поля GF(2); тогда, согласно формулам (3) и (4), для вычисления минимального многочлена и линейной сложности последовательности X достаточно найти корни многочлена S(t) в множестве $\{\alpha^v: v=0,1,\ldots,p^n-1\}$ и определить их кратность.

Согласно определению последовательности, имеем

$$S(\alpha^{v}) = \sum_{l=0}^{2^{m}-1} \sum_{k \in I_{l}} \sum_{u \in H_{l,k}} \alpha^{vu} + \sum_{j=0}^{2^{m-1}-1} \alpha^{jv2p^{n}}.$$
 (5)

Лемма 1. Для любых $l=0,1,\dots,2^m-1$ и $k=0,1,\dots,d-1$ справедливо равенство $\sum\limits_{u\in H_{l,k}}\alpha^u=\sum\limits_{w\in C_k}\alpha^w.$

Доказательство. По определению α имеем, что $\alpha^u = \alpha^{u \bmod p^n}$, а так как $\{u \bmod p^n : u \in H_{l,k}\} = C_k$, то это и доказывает лемму 1.

Из леммы 1 и формулы (5) видно, что если один и тот же индекс k принадлежит двум разным подмножествам I_s и I_f , то соответствующий вклад классов вычетов $H_{s,k}$ и $H_{f,k}$ при вычислении значений $S(\alpha^v)$ будет нулевой. Введём два новых подмножества

индексов
$$I=\{k: k=0,1,\dots,d-1$$
 и $\sum_{j=0}^{2^{m-1}-1}|\{k\}\cap I_{2j}|$ — нечётное число $\}$ и $J=\{k:$

$$k=0,1,\ldots,d-1$$
 и $\sum_{j=0}^{2^{m-1}-1}|\{k\}\cap I_{2j+1}|$ — нечётное число $\}.$

Далее, метод вычисления значений производящей функции последовательности с периодом p^n , то есть сумм $\sum\limits_{w\in C_l}\alpha^w$, предложен в [8]. Введём дополнительно следу-

ющие обозначения. Пусть $\beta=\alpha^{p^{n-1}}$ — первообразный корень степени p из единицы в расширении поля $\mathrm{GF}(2)$ и $S_d(t)=\sum_{u\in H_0}t^{u\bmod p},$ то есть $S_d(t)$ — многочлен, соответ-

ствующий классу вычетов степени d по модулю p. Тогда, согласно [8], если $v \in p^f H_j$, то $\sum_{u \in C_k} \alpha^{uv} = S_d(\beta^{\theta^{j+k}}) + f(p-1)/d$.

Отсюда, воспользовавшись леммой 1, формулой (5) и определением множеств I, J, получаем следующее утверждение (если I или J—пустое множество, то соответствующую сумму считаем равной нулю).

Лемма 2. Если $v \in p^f H_j$ для $f = 0, 1, \dots, n-1$ и $j = 0, 1, \dots, d-1$, то

$$S(\alpha^{v}) = \sum_{k \in I} S_d(\beta^{\theta^{j+k}}) + \sum_{k \in J} S_d(\beta^{\theta^{j+k}}) + (|I| + |J|)f(p-1)/d + \delta, \tag{6}$$

где

$$\delta = \begin{cases} 1, \text{ если } m = 1, \\ 0, \text{ если } m > 1. \end{cases}$$

Таким образом, задача вычисления значений $S(\alpha^v)$ свелась к расчёту значений многочлена $S_d(t)$. Исследуем вопрос о кратных корнях многочлена S(t).

Лемма 3. Если $v \in p^f H_j$ для $f = 0, 1, \ldots, n-1$ и $j = 0, 1, \ldots, d-1$, то α^v — кратный корень многочлена S(t) тогда и только тогда, когда

$$\sum_{k \in I} S_d(\beta^{\theta^{j+k}}) = f|I|(p-1)/d + \delta, \quad \sum_{k \in I} S_d(\beta^{\theta^{j+k}}) = f|J|(p-1)/d.$$

Доказательство. Исследуем производную многочлена S(t). Если $u \in H_{l,k}$, то для $l \equiv 0 \pmod 2$ всегда $u \equiv 0 \pmod 2$, следовательно, в кольце $\mathrm{GF}(2)[t]$

$$\left(\sum_{u \in H_{l,k}} t^u\right)' = \begin{cases} 0, \text{ если } l - \text{ чётное}, \\ \sum_{u \in H_{k,l}} t^{u-1}, \text{ если } l - \text{ нечётное}. \end{cases}$$

Таким образом, $S'(t) = \sum_{l=0}^{2^{m-1}-1} \sum_{k \in I_{2l+1}} \sum_{u \in H_{2l+1,k}} t^{u-1}$. Тогда по формуле (6) и лемме 1 имеем

$$S'(\alpha^{v}) = \alpha^{-v} \sum_{l=0}^{2^{m-1}-1} \sum_{k \in I_{2l+1}} \left(S_d(\beta^{\theta^{j+k}}) + f(p-1)/d \right) =$$
$$= \alpha^{-v} \left(\sum_{k \in J} S_d(\beta^{\theta^{j+k}}) + \sum_{l=0}^{2^{m-1}-1} |I_{2l+1}| f(p-1)/d \right),$$

или

$$S'(\alpha^v) = \alpha^{-v} \left(\sum_{k \in J} S_d(\beta^{\theta^{j+k}}) + |J| f(p-1)/d \right). \tag{7}$$

Таким образом, если α^v — кратный корень многочлена S(t), то $S(\alpha^v) = S'(\alpha^v) = 0$ и утверждение леммы 3 следует из формул (7) и (8). Наоборот, если выполняется условие леммы 3, то по (7) и (8) имеем, что $S(\alpha^v) = S'(\alpha^v) = 0$, то есть α^v — кратный корень многочлена S(t).

Леммы 2 и 3 показывают, что для определения корней многочлена S(t) в множестве $\{\alpha^v: v=0,1,\ldots,N-1\}$ и выделения среди них кратных достаточно знать числа $S_d(\beta^{\theta^l}), l=0,1,\ldots,d-1$. При этом если $v,u\in p^fH_j$, то $S(\alpha^v)=S(\alpha^u)$ и $S'(\alpha^v)=S'(\alpha^u)$ для любых значений $f=0,1,\ldots,n-1,\ j=0,1,\ldots,d-1$.

для любых значений
$$f=0,1,\ldots,n-1,\ j=0,1,\ldots,d-1.$$
 Пусть $\mathbf{S}_d(x)=\left(S_d(x),S_d(x^\theta),\ldots,S_d(x^{\theta^{d-1}})\right),\mathbf{R}(x)=\sum_{k\in I}\mathbf{S}_d(x^{\theta^k})$ и $\mathbf{Q}(x)=\sum_{k\in J}\mathbf{S}_d(x^{\theta^k}).$ Обозначим координаты вектор-функций $\mathbf{R}(x)$ и $\mathbf{Q}(x)$ при $x=\beta$ через r_i,q_i для $i=0,1,\ldots,d-1.$

Непосредственно из лемм 2 и 3 получаем следующее утверждение.

Теорема 1. Если $v \in p^f H_j$, $f = 0, 1, \ldots, n-1$, $j = 0, 1, \ldots, d-1$, то α^v — корень многочлена S(t) тогда и только тогда, когда $r_j + q_j = (|I| + |J|) f(p-1)/d + \delta$, и корень α^v многочлена S(t) кратный тогда и только тогда, когда $r_j = |I| f(p-1)/d + \delta$.

Таким образом, теорема 1 и формулы (3), (4) показывают, что известные значения $\mathbf{R}(\beta)$, $\mathbf{Q}(\beta)$, а фактически $\mathbf{S}_d(\beta)$, позволяют оценить линейную сложность последовательности X. Метод вычисления значений $\mathbf{S}_d(x)$ предложен в [9] и развит в [10], там же найдены значения $\mathbf{S}_d(\beta^{\theta^j})$ при d=2,4,6,8. Следовательно, теорема 1 и результаты, представленные в [10], определяют метод анализа линейной сложности последовательностей с периодом $2^m p^n$, сформированных по правилу (2). Причём если m=1, то можно явно рассчитать линейную сложность любой последовательности при d=2,3,4,6,8, а если m>1 или d отлично от перечисленных, то можно подобрать такое правило построения последовательностей, при котором они заведомо будут обладать высокой линейной сложностью. Более того, вычисленные значения $S(\alpha^v)$, $v=0,1,\ldots,p^n-1$, позволяют рассчитать минимальный многочлен последовательности по формуле (3).

Далее проиллюстрируем предложенный метод на примерах.

3. Линейная сложность последовательностей с периодом $2p^n$

Исследуем линейную сложность ряда обобщённых циклотомических последовательностей с периодом $2p^n$, ограничившись при этом вариантом, когда число нулей и единиц на периоде последовательности одинаково, то есть последовательности являются сбалансированными. В этом случае $S(1) = p^n$, то есть $S(1) \mod 2 = 1$.

Не нарушая общности, всегда можно считать, что $0 \in I_0$ и ноль является общим элементом пересечения множеств I_0 , I_1 , если оно непусто. Рассмотрим возможные варианты для множеств I_0 , I_1 при d=2,4. Для m=1 всегда $I=I_0$, $J=I_1$, по определению множеств I, J, и $\delta=1$.

Пусть d=2, тогда, как это показано в [3] (см. также [10]), справедливо соотношение

$$\mathbf{S}_d(\beta) = \begin{cases} (1,0), \text{ если } p \equiv \pm 1 \pmod{8}, \\ (\mu, \mu + 1), \text{ если } p \equiv \pm 3 \pmod{8}. \end{cases}$$
(8)

Здесь μ — корень уравнения $x^2 + x + 1 = 0$ в расширении поля GF(2).

Лемма 4. Если $I_0 = I_1 = \{0\}$, то для последовательности X, сформированной по правилу (2), линейная сложность $L = 2p^n$, а её минимальный многочлен $m(t) = t^{2p^n} - 1$.

Доказательство. По условию $I=\{0\},\ J=\{0\},\ \text{тогда }\mathbf{R}(\beta)=\mathbf{Q}(\beta)=\mathbf{S}_2(\beta).$ Следовательно, $\mathbf{R}(\beta)+\mathbf{Q}(\beta)=(0,0)$ и $r_j+q_j=0$ для любого j=0,1. А так как (|I|+|J|)(p-1)/2— чётное число и $\delta=1$, то по теореме 1 $S(\alpha^v)\neq 0$ при всех значениях $v=0,1,\ldots,2p^n-1.$ Утверждение леммы 4 следует из формул (3) и (4).

Лемма 5. Если $I_0 = \{0\}, I_1 = \{1\}$, то для последовательности X, сформированной по правилу (2), линейная сложность

$$L = \begin{cases} p^n + 1, \text{ если } p \equiv \pm 3 \pmod{8}, \\ (p^n + 3)/2, \text{ если } p \equiv \pm 1 \pmod{8}, \end{cases}$$

а её минимальный многочлен

$$m(t) = \left\{ \begin{array}{l} (t^{p^n}-1)(t-1), \ \text{если} \ \ p \equiv \pm 3 \ (\text{mod } 8), \\ (t-1)^2 \prod\limits_{v \in C_1} (t-\alpha^v), \ \text{если} \ p \equiv 1 \ (\text{mod } 8), \\ (t-1)^2 \prod\limits_{v \in D} (t-\alpha^v), \ \text{если} \ p \equiv -1 \ (\text{mod } 8), \end{array} \right.$$

где $D = H_1 \cup pH_0 \cup \ldots \cup p^{n-1}H_{n \bmod 2}.$

Доказательство. В условиях леммы 5 $\mathbf{R}(\beta) = \mathbf{S}_2(\beta)$, а $\mathbf{Q}(\beta) = \mathbf{S}_2(\beta^{\theta})$, следовательно, $\mathbf{R}(\beta) + \mathbf{Q}(\beta) = (1,1)$ и $r_j + q_j = 1$ для j = 0,1. А так как (|I| + |J|)(p-1)/2 четное число и $\delta = 1$, то по теореме 1 $S(\alpha^v) = 0$ при всех значениях $v \in C_0 \cup C_1$, то есть при $v = 1, \dots, p^n - 1$.

Далее, если $v \in p^f H_j$ и α^v — корень многочлена S(x), то по теореме 1 он кратный корень, если $r_j = f(p-1)/2 + 1$.

Таким образом, если $p \equiv \pm 3 \pmod 8$, то по формуле (9) α^v для $v = 1, \dots, p^n - 1$ не является кратным корнем многочлена S(t) и $L = 2p^n - (p^n - 1) = p^n + 1$, а $m(t) = (t^{2p^n} - 1)/((t^{p^n} - 1)(t - 1)) = (t^{p^n} - 1)(t - 1)$.

Пусть $p \equiv \pm 1 \pmod 8$, тогда $\mathbf{R}(\beta) = (1,0)$ по формуле (9). Если $p \equiv 1 \pmod 8$, то $f(p-1)/2 + \delta \equiv 1 \pmod 2$, то есть α^v — кратный корень многочлена S(t) для любого $v \in C_0$. Если же $p \equiv -1 \pmod 8$, то соответственно получаем, что α^v — кратный корень многочлена S(t), когда $r_j = f + 1$, то есть при $v \in H_0 \cup pH_1 \cup \ldots \cup p^{n-1}H_{(n-1) \mod 2}$.

В обоих случаях $L = 2p^n - (p^n - 1) - (p^n - 1)/2 = (p^n + 3)/2$, но минимальные многочлены последовательностей, вычисленные по формуле(3), различаются.

В частном случае, когда $2 \in H_0$, утверждения лемм 4 и 5 были получены в [5, 6] другим способом.

Пусть d=4, тогда справедливо разложение $p=x^2+4y^2$, где $x\equiv 1\pmod 4$, x и y — целые числа [7]. Обозначим через $\left(\frac{a}{p}\right)$ символ Лежандра, а через $\left(\frac{a}{p}\right)_4$ — символ

4-степенного вычета [7], $\left(\frac{a}{p}\right)_4=1$ тогда и только тогда, когда сравнение $z^4\equiv a\ (\mathrm{mod}\ p)$ разрешимо в целых числах. Согласно [9, 10], имеем

1) если $\left(\frac{2}{p}\right)_4 = 1$, то $\mathbf{S}_4(\beta) = (1,1,0,1)$ для $x \equiv 5 \pmod 8$ и $\mathbf{S}_4(\beta) = (1,0,0,0)$ для $x \equiv 1 \pmod 8$;

2) если $\left(\frac{2}{p}\right)=1$ и $\left(\frac{2}{p}\right)_4\neq 1$, то $\mathbf{S}_4(\beta)=(\mu,0,\mu+1,0)$ для $x\equiv 5\pmod 8$ и $\mathbf{S}_4(\beta)=(\mu,1,\mu+1,1)$ для $x\equiv 1\pmod 8$, где $\mu-$ корень уравнения $t^2+t+1=0$ в расширении поля $\mathrm{GF}(2)$;

3) если $\left(\frac{2}{p}\right) \neq 1$, то $\mathbf{S}_4(\beta) = (\zeta, \zeta^2, \zeta^4, \zeta^8)$ или $\mathbf{S}_4(\beta) = (\zeta, \zeta^8, \zeta^4, \zeta^2)$, где ζ удовлетворяет условию $\zeta^8 + \zeta^4 + \zeta^2 + \zeta + 1 = 0$.

Воспользуемся этими соотношениями для расчёта линейной сложности последовательностей, сформированных на основе классов биквадратичных вычетов.

Лемма 6. Если $I_0 = \{0,1\}$, то для линейной сложности последовательности X, сформированной по правилу (2), справедливо следующее:

1)
$$L = 2p^n$$
, если $I_1 = \{0, 1\}$, или $I_1 = \{0, 2\}$ и $\left(\frac{2}{p}\right)_4 \neq 1$, или $I_1 = \{0, 3\}$ и $\left(\frac{2}{p}\right) \neq 1$;

2)
$$L = (3p^n + 1)/2$$
, если $I_1 = \{0,3\}$ и $\left(\frac{2}{p}\right) = 1$, $\left(\frac{2}{p}\right)_A \neq 1$;

3)
$$L = (5p^n + 1)/4$$
, если $\left(\frac{2}{p}\right)_4 = 1$ и $I_1 = \{0, 2\}$ или $I_1 = \{0, 3\}$.

Доказательство. Докажем лемму только для $I_1=\{0,3\}$, другие два варианта исследуются аналогично. Так как по условию |I|=|J|=2, то, согласно теореме 1, $S(\alpha^v)=0$ при всех значениях $v\in C_k$ тогда и только тогда, когда $r_k+q_k=1$ и при этом α^v — кратный корень для любого $v\in C_k$ тогда и только тогда, когда $r_k=1$. Если $I_0=\{0,1\}$ и $I_1=\{0,3\}$, то $\mathbf{R}(\beta)=\mathbf{S}_4(\beta)+\mathbf{S}_4(\beta^\theta)$, а $\mathbf{R}(\beta)+\mathbf{Q}(\beta)=\mathbf{S}_4(\beta^\theta)+\mathbf{S}_4(\beta^{\theta^3})$. Из приведённых выше соотношений для $\mathbf{S}_4(\beta)$ получаем, что $r_k+q_k\neq 1$ для k=0,1,2,3 при $\binom{2}{p}\neq 1$, следовательно, $L=2p^n$. Когда же $\binom{2}{p}=1$, то $\mathbf{R}(\beta)+\mathbf{Q}(\beta)=1$ нет кратных корней и $L=2p^n-2|C_0|=(3p^n+1)/2$. В то же время если $\binom{2}{p}=1$, то $\mathbf{R}(\beta)=(0,1,1,0)$ ((1,0,0,1)), тогда α^v являются кратными корнями при $v\in C_1(C_0)$ и $L=2p^n-3|C_0|=(5p^n+3)/4$. ■

В частном случае, для n=1 и $I_0=\{0,1\}$, $I_1=\{0,2\}$, линейная сложность последовательности X была исследована в [4].

Лемма 7. Если $I_0 = \{0,2\}$, $I_1 = \{0,3\}$, то для линейной сложности последовательности X, сформированной по правилу (2), справедливы следующие равенства:

1)
$$L = 2p^n$$
, если $\left(\frac{2}{p}\right)_4 \neq 1$;
2) $L = p^n + 1$, если $\left(\frac{2}{p}\right)_4 = 1$.

Лемма 7 доказывается подобно лемме 6. Все другие варианты для I_0, I_1 сводятся к уже рассмотренным.

4. Примеры оценки линейной сложности последовательностей с периодом $2^m p^n$

Рассмотрим три примера оценки линейной сложности последовательности. В [10, 11] предложено несколько правил построения последовательностей с периодами 4p, 8p, обладающих хорошей периодической автокорреляционной функцией. Оценим линейную сложность этих последовательностей в общем случае. Предварительно отметим, что для всех рассматриваемых последовательностей единица является корнем многочлена S(x) при m>1 и её кратность не превосходит m.

Лемма 8. Если d=2 и последовательность X с периодом $4p^n$ определена правилом (2) при $I_0=I_1=I_2=\{0\}, I_3=\{1\},$ то $L\geqslant 4p^n-4$.

Доказательство. Согласно условию леммы и определению множеств I и J, имеем $I=\varnothing$, $J=\{0,1\}$, тогда $r_j+q_j=1,\ j=0,1$, так как сумма $\sum\limits_{i=0}^{d-1} S_d(\beta^{\theta^i})=1$ [10], то есть, по теореме $1,\ S(\alpha^v)=1$ для $v=1,\ldots,p^n-1$. Таким образом, утверждение леммы следует из формулы $(4).\blacksquare$

Лемма 9. Если d=4 и последовательность X с периодом $4p^n$ определена правилом (2) при $I_0=I_1=\{0,1\}$ и $I_2=\{0,3\}, I_3=\{1,2\}$ или $I_2=\{1,2\}, I_3=\{0,3\}$, то $L\geqslant 4p^n-4$.

Лемма 9 доказывается аналогично лемме 8.

Лемма 10. Если d=4 и последовательность X с периодом $8p^n$ определена правилом (2) при $I_0=I_1=I_2=I_5=\{0\},\,I_3=\{1\},\,I_4=I_6=\{2\}$ и $I_7=\{3\},\,$ то $L\geqslant 8p^n-8,$ если $\binom{2}{p}\neq 1,\,$ и $L\geqslant 4p^n-8,\,$ если $\binom{2}{p}=1.$

Доказательство. В условиях леммы S(1)=0 и $I=\varnothing$, $J=\{1,3\}$, тогда $\mathbf{R}(\beta)=\mathbf{0}$. Если $\left(\frac{2}{p}\right)\neq 1$, то $q_i\neq 1$, следовательно, по теореме 1 $S(\alpha^v)\neq 0$ для $v=1,\ldots,p^n-1$. Если же $\left(\frac{2}{p}\right)=1$, то $\mathbf{Q}(\beta)=(0,1,0,1)$ и по теореме 1 $S(\alpha^v)=0$ для $v\in C_0\cup C_2$, причём каждый корень является кратным. Применение формулы (4) завершает доказательство леммы 10.

Заключение

Предложен метод анализа линейной сложности последовательностей с периодом 2^mp^n , построенных на основе обобщённых циклотомических классов. Метод позволяет как явно рассчитать линейную сложность и минимальный многочлен рассматриваемых последовательностей, так и оценить её, а также определить характеристики последовательностей, обладающих заведомо высокой линейной сложностью. Вычисле-

на линейная сложность ряда последовательностей на основе классов квадратичных и биквадратичных вычетов.

ЛИТЕРАТУРА

- 1. *Лидл Р.*, *Нидеррайтер Г*. Конечные поля. М.: Мир, 1988. 820 с.
- 2. Cusick T. W., Ding C., and Renvall A. Stream Ciphers and Number Theory. North-Holland Mathematical Library. V. 55. Amsterdam: Elsevier, 1998.
- 3. Ding C., Helleseth T., and Shan W. On the Linear Complexity of Legendre Sequences // IEEE Trans. Info Theory. 1998. V. IT-44. P. 1276–1278.
- 4. Ding C., Helleseth T., and Martinsen H. New families of binary sequences with optimal three-level autocorrelation // IEEE Trans. Info Theory. 2001. V. 47. P. 428–433.
- 5. Zhang J., Zhao C.-A., and Ma X. Linear complexity of generalized cyclotomic binary sequences of length $2p^m$ //Appl. Algebra Eng. Commun. Comput. 2010. V. 21. No. 2. P. 93–108.
- 6. Zhang J., Zhao C.-A., and Ma X. On the Linear Complexity of Generalized Cyclotomic Binary Sequences with Length $2p^2$ // IEICE Trans. Fundament. Electron., Commun. Comput. Sci. 2010. V. E93.A. Iss. 1. P. 302–308.
- 7. Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. М.: Мир, 1987. 416 с.
- 8. $Edemskiy\ V.\ A.$ About computation of the linear complexity of generalized cyclotomic sequences with period p^{n+1} // Designs, Codes and Cryptography. 2011. V. 61. No. 3. P. 251–260.
- 9. Едемский В. А. О линейной сложности двоичных последовательностей на основе классов биквадратичных и шестеричных вычетов // Дискретная математика. 2010. Т. 22. № 1. С. 74–82.
- 10. Едемский В. А, Гантмахер В. Е. Синтез двоичных и троичных последовательностей с заданными ограничениями на их характеристики. Великий Новгород: НовГУ, 2009. 189 с.
- 11. Zhang Y., Lei J. G., and Zhang S. P. A new family of almost differences sets and some necessary conditions // IEEE Trans. Info. Theory. 2006. V. 52. P. 2052–2061.