ФИЗИКА ПОЛУПРОВОДНИКОВ И ДИЭЛЕКТРИКОВ

УДК 621.315.592

А.В. ВОЙЦЕХОВСКИЙ 1,2 , С.Н. НЕСМЕЛОВ 1 , С.М. ДЗЯД 1 Х 1 , Т.Н. КОПЫЛОВ 2 , К.М. ДЕГТЯРЕНКО 2 , А.П. КОХАНЕНКО 1

АДМИТТАНС ОРГАНИЧЕСКИХ СВЕТОДИОДНЫХ СТРУКТУР С ЭМИССИОННЫМ СЛОЕМ ЯК-203 *

В широком диапазоне условий измерения экспериментально исследованы вольт-амперные характеристики и адмиттанс многослойных структур для органических светодиодов на основе системы PEDOT:PSS/NPD/ЯК-203/ВСР. Показано, что при напряжениях, соответствующих эффективной излучательной рекомбинации носителей заряда, наблюдается значительное уменьшение дифференциальной емкости структур. Частотные зависимости приведенной проводимости светодиодных структур хорошо согласуются с результатами численного моделирования в рамках метода эквивалентных схем. Изменения частотных зависимостей адмиттанса при изменении температуры наиболее выражены в диапазоне 200–300 К и менее заметны в области температур 8–200 К. Из частотных зависимостей мнимой части импеданса найдены подвижности носителей заряда при различных смещениях и температурах. Значения подвижности, полученные по использованной методике, несколько меньше значений, определенных методом переходной электролюминесценции. Зависимость подвижности от электрического поля хорошо аппроксимируется линейной функцией, при снижении температуры от 300 до 220 К подвижность уменьшается в несколько раз.

Ключевые слова: органический полупроводник, светодиодная структура, вольт-амперная характеристика, адмиттанс, метод эквивалентных схем, частотная зависимость мнимой части импеданса, подвижность носителей заряда, переходная электролюминесценция.

Введение

Электрические характеристики приборных структур для органических светоизлучающих диодов (ОСИД) интенсивно исследуются на протяжении последних пятнадцати лет [1, 2]. Такие структуры перспективны для разработок светодиодов, которые находят применение в дисплеях или системах освещения большой площади, а также транзисторов или фотоэлектрических приборов. Исследования электрических характеристик структур ОСИД необходимы для получения новой информации о транспортных явлениях в многослойных органических структурах, а также для оптимизации характеристик приборов органической оптоэлектроники.

Важнейшим параметром, определяющим рабочие характеристики ОСИД, является подвижность носителей заряда в органических пленках. Измерения подвижности носителей различными методами имеют ключевое значение для современного понимания переноса носителей заряда в органических и полимерных полупроводниках [3, 4]. Однако наиболее распространенные методы измерения подвижности – регистрации времени пролета (ВП, ТОF) [5] и переходной электролюминесценции (ПЭЛ, ELT) [6, 7] – имеют ряд серьезных ограничений [8, 9]. Для использования ВПметода толщина органических пленок должна составлять несколько микрометров, что не соответствует толщине пленок в реальных приборах, которая обычно не превышает десятков нанометров. Также для применения ВП-метода необходим слой, который эффективно инжектирует носители заряда. Область применения ПЭЛ-метода ограничена ОСИД, в которых подвижность носителей одного типа должна быть значительно больше подвижности носителей заряда другого типа. Кроме этого, интерпретация данных измерений ПЭЛ-методом может осложняться из-за влияния на результаты не только транспортных, но и рекомбинационных процессов.

По этим причинам в последние годы возрождается интерес к определению подвижности носителей заряда в органических пленках электрическими методами [10–15]. Измерения в различных условиях вольт-амперных (ВАХ), вольт-фарадных характеристик (ВФХ), зависимостей адмиттанса или импеданса могут дать важную информацию о процессах в многослойных органических структурах [16–20].

Одной из перспективных для применения в органической оптоэлектронике систем является структура ОСИД ITO/PEDOT:PSS/α-NPD/ЯК-203/ВСР/LiF/Al, в которой смесь диоксидов индия и

^{*} Исследования электрофизических характеристик проведены при финансовой поддержке РФФИ и Администрации Томской области в рамках научного проекта р а № 18–43–700005.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725