ЛИТЕРАТУРА

- 1. *Коломеец Н. А.* О некоторых свойствах конструкции бент-функций с помощью подпространств произвольной размерности // Прикладная дискретная математика. Приложение. 2018. № 11. С. 41–43.
- 2. Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V. 20. No. 3. P. 300–305.
- 3. Логачев О. А., Сальников А. А., Смышляев С. В., Ященко В. В. Булевы функции в теории кодирования и криптологии. 2-е изд. М.: МЦНМО, 2012. 584 с.
- 4. *Tokareva N. N.* Bent Functions, Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
- 5. Carlet C. Two new classes of bent functions // LNCS. 1994. V. 765. P. 77–101.
- 6. $McFarland\ R.\ L.$ A family of difference sets in non-cyclic groups // J. Combin. Theory. Ser. A. 1973. V. 15. P. 1–10.

УДК 519.7

DOI 10.17223/2226308X/12/15

О КУБИЧЕСКОЙ ЧАСТИ АЛГЕБРАИЧЕСКОЙ НОРМАЛЬНОЙ ФОРМЫ ПРОИЗВОЛЬНОЙ БЕНТ-ФУНКЦИИ

Т. А. Кузьмина

Доказано, что кубическая часть бент-функции от n переменных не может быть произвольной при n=6,8.

Ключевые слова: булева функция, бент-функция, линейная функция, квадратичная функция, кубическая функция, однородная функция.

Булевы функции, максимально удалённые в метрике Хэмминга от множества всех аффинных функций, называются бент-функциями. Известно, что каждая булева функция может быть единственным образом представлена в её алгебраической нормальной форме (АНФ). Одна из проблем в области бент-функций: верно ли, что произвольная однородная булева функция степени k от n переменных (n чётное) является частью АНФ некоторой бент-функции от n переменных? Известно, что линейная часть в АНФ бент-функции может быть произвольной [1]. Доказано, что любая однородная квадратичная булева функция является квадратичной частью некоторой бент-функции [2].

В данной работе доказано, что при n=6,8 не каждую однородную кубическую булеву функцию можно достроить до бент-функции от n переменных. Для случая n=8 лишь часть однородных кубических булевых функций может быть достроена до бент-функций от восьми переменных с помощью добавления однородных функций второй и/или четвёртой степеней.

Далее будем использовать индексные обозначения АНФ функции; например, 12+34 означает булеву функцию $x_1x_2 \oplus x_3x_4$.

Всего существует пять неэквивалентных кубических булевых форм от шести переменных [3], а именно: 123; 123+145; 123+456; 124+135+236; 123+124+135+236+456.

Теорема 1. Для n=6 функции 123;123+145;124+135+236 можно дополнить до бент-функций с помощью добавления однородных квадратичных булевых функций от шести переменных; функции 123+456;123+124+135+236+456 нельзя дополнить до бент-функций от шести переменных.

Существует 31 неэквивалентных кубических форм от восьми переменных [3]. В [4] приведена классификация форм четвёртой степени от восьми переменных, которые можно достроить до бент-функций [4], всего таких форм 536.

В таблице приведены результаты для кубических форм от восьми переменных. Во втором столбце представлена однородная кубическая форма, в третьем указано, можно ли достроить её до бент-функции, в четвёртом столбце — число k, показывающее, с помощью скольких форм четвёртой степени можно достроить кубические формы в том случае, если они достраиваются.

№	Однородная кубическая форма	Бент-функция	k
f_1	123	Достраивается	60
f_2	123 + 145	Достраивается	58
f_3	$123 {+} 456$	Не достраивается	-
f_4	124 + 135 + 236	Достраивается	38
f_5	123 + 124 + 135 + 236 + 456	Не достраивается	_
f_6	123 + 145 + 167	Достраивается	53
f_7	123 + 246 + 357	Достраивается	25
f_8	123 + 145 + 167 + 246	Достраивается	44
f_9	123 + 145 + 246 + 357	Не достраивается	_
f_{10}	123 + 124 + 135 + 236 + 456 + 167	Достраивается	42
f_{11}	123 + 145 + 167 + 246 + 357	Не достраивается	_
f_{12}	123 + 476 + 568	Не достраивается	-
f_{13}	$123 {+} 145 {+} 167 {+} 568$	Достраивается	17
f_{14}	$123 {+} 246 {+} 357 {+} 568$	Достраивается	24
f_{15}	123 + 246 + 357 + 128 + 138	Не достраивается	_
f_{16}	123 + 145 + 167 + 357 + 568	Не достраивается	_
f_{17}	123 + 145 + 478 + 568	Достраивается	46
f_{18}	123 + 124 + 135 + 236 + 456 + 167 + 258	Не достраивается	_
f_{19}	123 + 124 + 135 + 236 + 456 + 178	Не достраивается	_
f_{20}	123 + 145 + 246 + 357 + 568	Достраивается	12
f_{21}	123 + 145 + 246 + 467 + 578	Достраивается	11
f_{22}	123 + 145 + 357 + 478 + 568	Достраивается	43
f_{23}	123 + 246 + 357 + 478 + 568	Не достраивается	-
f_{24}	123 + 246 + 357 + 148 + 178 + 258	Не достраивается	_
f_{25}	123 + 145 + 167 + 246 + 357 + 568	Не достраивается	_
f_{26}	123 + 145 + 167 + 246 + 238 + 258 + 348	Не достраивается	_
f_{27}	$123 \!+\! 145 \!+\! 167 \!+\! 258 \!+\! 268 \!+\! 378 \!+\! 468$	Достраивается	34
f_{28}	$123 \!+\! 145 \!+\! 246 \!+\! 357 \!+\! 238 \!+\! 678$	Достраивается	29
f_{29}	123 + 145 + 246 + 357 + 478 + 568	Не достраивается	-
f_{30}	123 + 124 + 135 + 236 + 456 + 167 + 258 + 378	Не достраивается	_
f_{31}	123+156+246+256+147+157+357+348+258+458	Не достраивается	_

Теорема 2. Функции f_1, f_2, f_4, f_6, f_8 от восьми переменных можно дополнить до бент-функций с помощью добавления булевых функций второй степени от восьми переменных; остальные функции $f_3, f_5, f_7, f_9, f_{10}, \ldots, f_{31}$ нельзя дополнить до бент-функций таким образом.

Теорема 3. Функции f_1 , f_2 , f_4 , f_6 , f_7 , f_8 , f_{10} , f_{13} , f_{14} , f_{17} , f_{20} , f_{21} , f_{22} , f_{27} , f_{28} от восьми переменных можно дополнить до бент-функций с помощью добавления слагаемых второй и четвёртой степеней от восьми переменных; остальные функции f_3 , f_5 , f_9 , f_{11} , f_{12} , f_{15} , f_{16} , f_{18} , f_{19} , f_{23} , f_{24} , f_{25} , f_{26} , f_{29} , f_{30} , f_{31} нельзя дополнить до бент-функций таким способом.

ЛИТЕРАТУРА

- 1. Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
- 2. Tokareva N. Algebraic Normal Form of a Bent Function: Properties and Restrictions. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2018/1160.
- 3. *Черемушкин А. В.* Методы аффинной и линейной классификации булевых функций // Труды по дискретной математике. М.: Физматлит, 2001. Т. 4. С. 273–314.
- 4. Langevin P. Classification of Boolean Quartics Forms in Eight Variables. http://langevin.univ-tln.fr/project/quartics/quartics.html.

УДК 519.7

DOI 10.17223/2226308X/12/16

ИЗОМЕТРИЧНЫЕ ОТОБРАЖЕНИЯ МНОЖЕСТВА ВСЕХ БУЛЕВЫХ ФУНКЦИЙ В СЕБЯ, СОХРАНЯЮЩИЕ САМОДУАЛЬНОСТЬ И ОТНОШЕНИЕ РЭЛЕЯ¹

А. В. Куценко

Изучаются изометричные отображения множества всех булевых функций от *п* переменных в себя. Получено полное описание изометричных отображений, сохраняющих самодуальность функций. Доказано, что каждое такое отображение сохраняет также антисамодуальность. Найдены все изометричные отображения, определяющие взаимно-однозначные соответствия между множествами самодуальных и антисамодуальных бент-функций. Получены все изометричные отображения, сохраняющие отношение Рэлея каждой булевой функции. Следствием данных результатов является полное описание всех изометричных отображений, сохраняющих максимальную нелинейность и расстояние Хэмминга между каждой бент-функцией и дуальной к ней.

Ключевые слова: булева функция, изометричное отображение, самодуальная бент-функция, отношение Рэлея.

Булевой функцией от n переменных называется любое отображение $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Скаларным произведением $\langle x,y \rangle$ двух векторов $x=(x_1,x_2,\dots,x_n)\in \mathbb{F}_2^n, y=(y_1,y_2,\dots,y_n)\in \mathbb{F}_2^n$ называется значение $\bigoplus_{i=1}^n x_iy_i$. Весом Хэмминга $\operatorname{wt}(x)$ вектора $x\in \mathbb{F}_2^n$ называется количество единиц в нём. Расстояние Хэмминга $\operatorname{dist}(f,g)$ между булевыми функциями f,g от n переменных—число двоичных векторов длины n, на которых эти функции принимают различные значения. Через \mathcal{O}_n обознается ортогональная группа $\mathcal{O}_n=\left\{L\in GL(n,2):LL^T=I_n\right\}$, где L^T —операция транспонирования $L;I_n$ —единичная матрица порядка n над полем \mathbb{F}_2 [1]. Преобразованием Уолша—Адамара булевой функции f от n переменных называется целочисленная функция $W_f:\mathbb{F}_2^n\to\mathbb{Z}$, заданная равенством $W_f(y)=\sum_{x\in\mathbb{F}_2^n}(-1)^{f(x)\oplus\langle x,y\rangle},\,y\in\mathbb{F}_2^n.$

Булева функция f от чётного числа переменных n называется $\mathit{бент}$ -функцией, если $|W_f(y)| = 2^{n/2}$ для каждого $y \in \mathbb{F}_2^n$ [2]. Для множества бент-функций от n переменных используется обозначение \mathcal{B}_n . Для каждой $f \in \mathcal{B}_n$ однозначным образом определяется $\mathit{дуальная}$ к ней бент-функция $\widetilde{f} \in \mathcal{B}_n$, значения которой находятся из соответствия $W_f(y) = (-1)^{\widetilde{f}(y)} 2^{n/2}$ для каждого $y \in \mathbb{F}_2^n$. Бент-функция f называется $\mathit{самодуальной}$

 $^{^{1}}$ Исследование выполнено при финансовой поддержке РФФИ (проекты № 18-07-01394 и 18-31-00374).