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2. Conclusion and Future Work
In this work, we have presented a new algorithmic-algebraic scheme based in the Lai —

Massey structure for constructing permutations of dimension n = 2k, k > 2. For the
common case k = 8, we have obtained new cryptographically strong 8-bit permutations
having better resistance to algebraic attacks in comparison with the inversion function in
GF(28) which so far has the best-known values for nonlinearity and differential uniformity.
Compared to the best nonlinearity (108, for k = 4) offered by the construction presented
in [6] and later generalized in [7], the nonlinearity for the permutations obtained by our
scheme slightly decrease up to 104, but to the best of our knowledge the schemes presented
in [6, 7] can not produce involutions and orthomorphisms with strong cryptographic
properties, so we can conclude that the new structure presented in this work is more powerful
and attractive due to the diversity of permutations that can be constructed. Interestingly,
the involutions and orthomorphisms founded in this work have comparable classical
cryptographic properties like those constructed by using spectral-linear and spectral-
difference methods [8]. The main advantage of our 8-bit permutations is that they can be
constructed using smaller 4-bit components which could be useful for the implementation
of the S-Box in hardware or using a bit-sliced approach. We only presented a new scheme
that can help to find permutations, involutions and orthomophisms with rather good
cryptographic properties. There are several questions (theoretical results, hardware and
bit-sliced implementations, efficient methods of masking) about the construction suggested
in this work which are left as future work.
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SOME PROPERTIES OF THE OUTPUT SEQUENCES
OF COMBINED GENERATOR OVER FINITE FIELDS

Aulet R. Rodriguez

The sequences are an important part of the cryptography and analysis of their
properties is of great interest. In this paper, the following characteristics of combined
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generator are analyzed: period of output sequences and the distribution of elements in
the output sequences over finite field.
Keywords: finite field, correlation-immune function, resilient function, balanced
function, combined generator.

Introduction
The randomness is an important property in the cryptographic scheme. One of the

components that ensure this property is the random sequence that is built by generators.
The elements of random sequences can be used as initialization vectors, in cyclic codes, as
keys in block cipher, and in stream cipher. The combined generator presents one class of
generators that are used to obtain pseudorandom sequence. Examples of its use are stream
ciphers: A.1 of standard GSM [1], Grain, Trivium [2]. The most results belong to generators
over the field GF(2) [1, 3, 4].

In this work, we analyze the following characteristics for combined generator: period of
the output sequence and distribution elements in output sequence over finite field.

Let P = GF(q) be a finite field with q elements, F1(x), . . . , Fk(x) be polynomials with
coefficients in P of degrees m1, . . . ,mk respectively. We assume that F1(x), . . . , Fk(x) are
primitive polynomials [5], also gcd(mi,mj) = 1 for each i 6= j. For each function ϕ : P k→P ,
we consider the combined generator [1, 6, 7] with the output sequence

v(i) = ϕ(u1(i), u2(i), . . . , uk(i)), i > 0,

where uj is a linear recurring sequence over P with minimal polynomial Fj(x).

1. Period
In [6] the general bounds for the period of combined generator and the exact equality in

the case GF(2) is presented. In this work, we give bounds for the period of a given generator
for one class of function over any finite field and show, how this period can be calculated.

Theorem 1. If ϕ has the form

ϕ(x1, . . . , xk) =
k∑
s=1

∑
16i1<i2<...<is6k

ci1i2...isxi1xi2 . . . xis ,

then period T (v) of sequence v satisfies the conditions

(qm1 − 1) . . . (qmk − 1)

(q − 1)k

∣∣∣T (v) and T (v)
∣∣∣ (qm1 − 1) . . . (qmk − 1)

(q − 1)k−1
.

Theorem 2. In conditions of theorem 1, if bi = Fi(0)(−1)mi , i = 1, . . . , k, and m =
= m1 . . .mk, then

T (v) =
(qm1 − 1) . . . (qmk − 1)

(q − 1)k
d,

where d = lcm(ord(b
m/mi1
i1

. . . b
m/mis
is

) : ci1i2...is 6= 0). Moreover, d is the minimal number
in N for which

ϕ(x1, . . . , xk) = ϕ(b
dm/m1

1 x1, . . . , b
dm/mk

k xk).

Corollary 1. In conditions of theorem 1, if exist such i1, . . . , ik for which
b
m/mi1
i1

. . . b
m/mis
is

is a primitive element or function ϕ(x1, . . . , xk) is linear in variables x1,
. . ., xk, then

T (v) =
(qm1 − 1) . . . (qmk − 1)

(q − 1)k−1
.
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2. Frequencies
For each element c ∈ P ∗, we define the following function ψc : P k → C∗, where C∗ is

multiplicative group of complex numbers, as follows

ψc(x1, . . . , xk) = χ(cϕ(x1, . . . , xk)),

where χ is character of (P,+), χ(x) = e2πitrPP0
(x)/p, for all x ∈ P , P0 = GF(p) is the prime

field and trPP0
(x) is the trace of x over P0. For every function ψ : P k → C∗, it is shown [8],

that, for any (x1, . . . , xk) ∈ P k,

ψc(x1, . . . , xk) =
1

qk
∑

a∈Pk

Wψ(a)χa(x1, . . . , xk), Wψc(a) =
∑

b∈Pk

ψc(b)χ(ab),

where χ is the conjugate character.
The class of correlation-immune and resilient function over any field is defined in [9].

In this work, we analyze (k − 1)-resilient function. We shall calculate the value

Nl(z, v) = |{i ∈ {0, . . . , l − 1} : v(i) = z}|,
where l ∈ N, l 6 T = (qm1 − 1) . . . (qmk − 1)/(q − 1)k−1.

Theorem 3. If ϕ(x1, . . . , xk) is (k−1)-resilient function and m = m1 + · · ·+mk, then∣∣∣∣Nl(z, v)− l

q

∣∣∣∣ 6 (q − 1)(k+2)/2

q
Cl,

where

Cl =


(

4

π2
ln(T ) +

9

5

)
qm/2, if l < T,

(qm − T )1/2, if l = T.

Corollary 2. If ϕ(x1, . . . , xk) = a1x1 + . . .+ akxk, then∣∣∣∣Nl(z, v)− l

q

∣∣∣∣ 6 q − 1

q
Cl.

For a linear function the Niederreiter’s bounds [10, theorem 2] are better than our
bounds in whole period. But for to use the Niederreiter’s bounds, it is necessary to know
the whole period, in practice we have only an interval of the period, which makes our
bounds more accurate in the latter case. Now, we shall show that, in general, for other
(k − 1)-resilient functions we can use our bounds when the Niederreiter’s bounds does not
work, or vice-versa.

Denoting by Rk−1 the set of all (k− 1)-resilient functions, in Rk−1 we define the binary
relation ∼ as follows:

∀ϕ1, ϕ2 ∈ Rk−1

(
ϕ1 ∼ ϕ2 ⇔

⇔ ∃ permutation π
(
∀(x1, . . . , xk) ∈ P k (ϕ2(x1, . . . , xk) = π(ϕ1(x1, . . . , xk)))

))
.

This relation is an equivalence. If we can determine the period and the distribution of
elements for the function ϕ1, we can also make it for the function ϕ2. Let us show that it
cannot always take the function linear like representatives of the classes.

Proposition 1. Let P = GF(22), ϕ(x1, x2) = x2
1 +x2. A permutation polynomial π(x)

and a1, a2 for which π(ϕ(x1, x2)) = a1x1 + a2x2, do not exist.

For function ϕ in proposition 1, it is necessary to use the bound of theorem 3. But if
ϕ(x1, x2) = x2

1 + x2
2, we can use the Niederreiter’s bounds.
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DISCRETE LOGARITHM FOR NILPOTENT GROUPS
AND CRYPTANALYSIS OF POLYLINEAR CRYPTOGRAPHIC SYSTEM1

V.A. Roman’kov

We present an efficient algorithm to compute a discrete logarithm in a finite nilpotent
group, or more generally, in a finitely generated nilpotent group. Special cases of a
finite p-group (p is a prime) and a finitely generated torsion free nilpotent group are
considered. Then we show how the derived algorithm can be generalized to an arbitrary
finite or finitely generated nilpotent group respectively. We suppose that group is
presented by generating elements and defining relators or as a subgroup of a triangular
matrix group over a prime finite field (in finite case) or over the ring of integers (in
torsion-free case). On the base of the derived algorithm we give a cryptanalysis of some
schemes of polylinear cryptography known in the literature.
Keywords: discrete logarithm, nilpotent group, polylinear system, cryptanalysis.

Introduction
Let G be a group. We say that the discrete logarithm is (efficiently) computable in G

if there is an efficient algorithm that finds an exponent x ∈ Z for any expression of the
form f = gx, where g, f ∈ G. The problem of determining x given g and f = gx is called
the discrete logarithm problem in G. The classical Diffie—Hellman exchange protocol, the
ElGamal system and many other cryptographic schemes, protocols and systems are based

1The author is supported by RFBR, project No. 18-41-550001а.


