
2019

ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА

Математические методы криптографии №45

МАТЕМАТИЧЕСКИЕ МЕТОДЫ КРИПТОГРАФИИ

UDC 621.391.7 DOI 10.17223/20710410/45/4
ON THE CONSTRUCTION OF A SEMANTICALLY SECURE
MODIFICATION OF THE MCELIECE CRYPTOSYSTEM

Y.V. Kosolapov, O.Y. Turchenko

Southern Federal University, Rostov-on-Don, Russia

E-mail: itaim@mail.ru

The security of currently used asymmetric cryptosystems is based on the problems of
discrete logarithm or discrete factorization. These problems can be effectively solved
using Shor’s algorithm on quantum computers. An alternative to such cryptosystems
can be the McEliece cryptosystem. Its security is based on the problem of decoding a
general linear code. In its original form, the McEliece cryptosystem is not semantically
secure, from here the problem of constructing a semantically secure cryptosystem of
the McEliece type is relevant. In the paper, the goal is to construct a McEliece type
cryptosystem that has the IND-CPA property. Further, one can suppose that this
system can be used as base cryptosystem for building the McEliece type encryption
scheme with the IND-CCA2 property and an efficient information transfer rate.

Keywords: McEliece type cryptosystems, IND-CPA, semantic security, standart
model.

Introduction
Many public-key cryptosystems are vulnerable to attacks on ciphertext: chosen plaintext

attack, chosen ciphertext attack, malleability attack. The readers are referred to [1]
for detailed description of these attacks. Semantically secure cryptosystems are immune
to most of these attacks. Semantic security was introduced in [2] and means that
the ciphertext does not give the adversary any information about the plaintext with
polynomial restrictions on adversary’s computing resources. One way to build such
cryptosystems is to use probabilistic encryption. For example, M. Bellare and P. Rogaway
in [3] proposed the optimal asymmetric encryption padding (OAEP) modification for
the widely used asymmetric RSA cryptosystem. It should be noted that the security of
currently used asymmetric cryptosystems is based on the problems of discrete logarithm or
discrete factorization. These problems can be effectively solved using Shor’s algorithm [4]
on quantum computers. An alternative to such cryptosystems can be the McEliece
cryptosystem [5], whose security is based on the problem of decoding a general linear code.
In its original form, the McEliece cryptosystem is not semantically secure. The problem of
constructing a semantically secure cryptosystem of the McEliece type is relevant. In [1] a
modification has been constructed that possesses the strongest persistence property — the
indistinguishability under adaptive chosen ciphertext attack (IND-CCA2). However, this
property is achieved only in the random oracle model. This model was first used in [6]
and means that protocol participants have access to some theoretical function (oracle).
The oracle for any unique argument produces a truly random value and if the argument
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repeats, the oracle repeats the corresponding output. In [7] a modification of McEliece
cryptosystem is constructed that has the property of indistinguishability under chosen
plaintext attack (IND-CPA) without using the random oracle model. In this case, one
can say that the standard model is used. This modification was later used in [8] as a base
cryptosystem to construct a system that has the IND-CCA2 property within the standard
model. In [8] one information message is encrypted l times, which leads to a decrease in
the information transfer rate by at least l times. It is important to note that l is the
length of the digital signature key. To provide high security according to [9] the key length
of the asymmetric cryptosystem underlying the digital signature algorithm should be at
least 256 bits. From here, the rate of information transfer of the cryptosystem from [8] is
essentially low. Consequently, the development of cryptosystems of the McEliece type with
the IND-CCA2 property and the high information transfer rate is current of interest.

In the present paper, the goal is to construct a McEliece type cryptosystem that has
the IND-CPA property. Further, using the ideas of [8], one can suppose that this system
can be used as base cryptosystem for building the McEliece type encryption scheme with
the IND-CCA2 property and a higher information transfer rate.

The paper has the following structure. In Section 1 2 we introduce the basic definitions.
The Section 2 describes the McEliece cryptosystem [5] and its semantically secure
modification [7]. Three new cryptosystems are also constructed here. Two of them are
used in Section 3 to prove the semantic security of the third one. Section 4 proposes data
transfer protocol using this modification.

1. Preliminaries
Let Fq be a Galois field of cardinality q, where q is the degree of a prime number,

m = (m1, . . . ,mn) ∈ Fnq . The support of the vectorm is the set supp(m) = {i : mi 6= 0} and
the Hamming weight of this vector is a number wt(m) = |supp(m)|. For the vector m ∈ Fnq
and the ordered set ω ⊆ {1, . . . , n} we consider the projection operator Πω : Fnq → F|ω|q
acting according to the rule:

Πω(m) = (mi1 , . . . ,mi|ω|), ij ∈ ω, j = 1, . . . , |ω|.

Let x ∈ Fn1
q , y ∈ Fn2

q , z ∈ Fnq , n1 + n2 = n, ω ⊂ {1, . . . , n}, |ω| = n1, then z = x ‖ y
will be a concatenation of the vectors x and y. Denote z = x ‖ω y as merging of these
vectors over an ordered set ω. In other words, Πω(z) = x and Π{1,...,n}\ω(z) = y. Further we
will use the standard notations for writing algorithms and experiments described in [10].
By y ← A(x1, x2, . . .) we mean that the algorithm A runs with input parameters x1, x2, . . .
and output value y. If the algorithm A has access to the output of the algorithm (oracle) O
then we write y ← AO(x1, x2, . . .). If S is a finite set, then s ∈R S denotes the operation of
picking an element at random and uniformly from S. To denote an asymmetric encryption
scheme we will use the triplet of algorithms, i.e. Σ = (K, E ,D), where 1) K is a probabilistic
polynomial-time key generation algorithm which takes as input a security parameter N ∈ N
and outputs a public-key pk and a secret-key sk; 2) E is probabilistic polynomial-time
encryption algorithm which receives as input a public-key pk and a message m, and outputs
a ciphertext c. We will write {m}Σ

pk as encryption of the message m with the key pk;
3) D is deterministic polynomial-time decryption algorithm which takes as input a secret-
key sk and a ciphertext c, and outputs either a message m or a symbol ⊥ in the case,
when ciphertext is incorrect. Decryption of the ciphertext c on the secret key sk we will
denote {c}Σ

sk.
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We say a function γ : N → [0, 1] is negligible in k, if ∀c ∈ N ∃kc (γ(k) 6 k−c for all
k > kc).

Now we will consider the notions of the security of public key cryptosystems. The first
one is the indistinguishability under chosen plaintext attack introduced in [2]. We will
consider it in the same way as [8].

Let Σ be an encryption scheme and let A = (A1,A2) be an adversary. It should be noted
that A is polynomial time if both probabilistic algorithm A1 and probabilistic algorithm A2

are polynomial time. Now one can consider the following experiment (Algorithm 1).

Algorithm 1. Expcpa
Σ,A

1: (pk, sk)← K(1N);
2: (m0,m1, st)← A1(pk);
3: b← {0, 1};
4: c← {mb}Σ

pk;
5: B ← A2(c, st).
6: If B = b, then return 1, else return 0.

The meaning of this experiment can be explained by an example. Let Σ be the basic
RSA cryptosystem over ring Zn. The adversary selects two plaintexts using the algorithmA1

which generates messages randomly or by using some features of the cryptosystem. In the
basic RSA cryptosystem the feature is the fact that {0}Σ

pk = 0 ∈ Zn for any pk. Let A1

always gives a pair (0, a, st), where a 6= 0 and st is the whole state information obtained
during the run of A1. For instance st contains a public key pk and generated messages
m0, m1. Then the experimenter selects random coin b and encrypts mb. The adversary’s
task, given the encryption c, is to determine which of the two plaintexts was encrypted.
In the framework of this example, algorithm A2 can be trivial. In fact A2 checks whether
the resulting cipher is a zero number. If it is, then A2 outputs 0 (corresponds to zero plain
text), otherwise 1 (corresponds to plain text a).

The advantage of the adversary A is determined by the value

Advcpa
Σ,A(N) =

∣∣∣∣P[Expcpa
Σ,A = 1]− 1

2

∣∣∣∣ ,
where P[A] denotes probability of the event A. It is said that the cryptosystem Σ has
the property IND-CPA if for any polynomial algorithm A = (A1,A2) the advantage of
Advcpa

Σ,A(N) is a negligible function in N .
Now let the adversary AD = (AD1 ,AD2 ) has access to the decryption oracle D. By AD{·}i

we mean that adversary ADi has a polynomial number of queries to the oracle D. Let us
consider the following experiment (Algorithm 2).

Algorithm 2. Expcca2
Σ,A

1: (pk, sk)← K(1N);
2: (m0,m1, st)← AD{·}1 (pk);
3: b← {0, 1};
4: c∗ ← {mb}Σ

pk;
5: B ← AD{·}2 (c∗, st), and D{c∗} =⊥;
6: If B = b, then return 1, otherwise 0.



36 Y.V. Kosolapov, O. Y. Turchenko

The principal difference from the previous experiment is that the algorithms A1 and A2

have access to decryption oracle. The decryption oracle takes as input a ciphertext and for
a polynomial time outputs the corresponding plain text. The only limitation is that this
oracle can not be requested by the cipher text produced by the experimenter on step 4
(D{c∗} =⊥). In [11], a practical attack on the RSA standard PKCS #1 was presented (the
SSL protocol used that standard at that time), which was based on the idea of decryption
oracle.

The advantage of adversary AD is

Advcca2
Σ,A(N) =

∣∣∣∣P[Expcca2
Σ,A = 1]− 1

2

∣∣∣∣ .
It is said that the cryptosystem Σ has the property IND-CCA2 if for any polynomial
algorithm AD an advantage Advcca2

Σ,A(N) is negligible function in N .
Further we need some notions from [12, p. 22–26]. Let X0 and X1 be finite random

variables with the set of values D. Then the statistical distance is the function

δ(X0, X1) =
1

2

∑
d∈D

∣∣P[X0 = d]− P[X1 = d]
∣∣.

Let A be a class of polynomial-time algorithms, which take a cipher text c and some state
information st as input and output one bit. For example, within the framework of the
experiment Expcpa

Σ,A algorithm A2 belongs to this class.
Then we will say that ciphertexts of two different cryptosystems Σ1 = (K, E1,D1) and

Σ2 = (K, E2,D2) are indistinguishable by the class of polynomial algorithms A if for any
information message m and for all A ∈ A

δ(A({m}Σ1
pk1
, st1),A({m}Σ2

pk2
, st2))

is a negligible function in N , where pki is generated by K(1N). It is not difficult to verify
that for all A ∈ A

δ(A({m}Σ1
pk1
, st1),A({m}Σ2

pk2
, st2)) =

∣∣P[A({m}Σ1
pk1
, st1) = 0]− P[A({m}Σ2

pk2
, st2) = 0]

∣∣.
Lemma 1. Let Σ1 = (K, E1,D1) and Σ2 = (K, E2,D2) are cryptosystems, Σ1 has the

IND-CPA property. If ciphertexts of two different cryptosystems are indistinguishable by
the class of polynomial algorithms A, then Σ2 has the IND-CPA property.

Proof. Suppose that there is an adversary A = (A1,A2) such that Advcpa
Σ2,A(N) is

a function ψ that is not negligible in N . Now we construct the adversary algorithm B =
= (B1,B2) on the basis ofA and estimateAdvcpa

Σ1,B(N). Let pk1 is public key generated by K.
The algorithm B1 takes as input pk1 and generates public key pk2 using K. Then B1 calls the
algorithmA1(pk2) and outputs a triplet (m0,m1, st1). Thus, in spite of different public keys,
the outputs of B1(pk1) and A1(pk2) will be identical. The algorithm B2 simply calls the A2

algorithm from its input. Since the experiments Expcpa
Σ1,B and Expcpa

Σ2,A differ on fourth step,
the outputs of the algorithms B2 andA2 may differ. Consider the statistical distance between
their outputs. By the condition of the lemma, the ciphers are indistinguishable by the class
of polynomial algorithms A. Since A2 belongs to this class, then

∣∣P[A2({m}Σ1
pk1
, st1)=0] −

− P[A2({m}Σ2
pk2
, st2) = 0]

∣∣ = η, where η is a negligible function in N . Because of B2 simply
calls A2 we have

|P[B2({m}Σ1
pk1
, st1) = 0]− P[A2({m}Σ2

pk2
, st2) = 0]| = η.
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It follows that Advcpa
Σ1,B(N) = ψ± η, as Advcpa

Σ1,B(N) is directly related to the output of B2.
But ψ ± η is not a negligible in N . This contradicts the fact that Σ1 has the IND-CPA
property.

2. McEliece type cryptosystems
Consider the McEliece cryptosystem McE(C) on the linear [n, k, d]-code C(⊆ Fnq ), where

n is the length, k is the code dimension, and d is the minimum code distance. Let G be the
generating matrix of the code C, t = b(d− 1)/2c. A secret key sk is a pair (S, P ), where S
is a non-singular (k × k)-matrix over the field Fq, and P is a permutation (n× n)-matrix.
A public key pk is a pair (G̃ = SGP, t). Encryption of a message x ∈ Fkq is performed
according to the rule

{x}McE
pk = xG̃+ e = y, wt(e) 6 t.

To decrypt the ciphertext y one should use an effective decoder DecC : Fnq → Fkq of the
code C and the secret key sk:

{y}McE
sk = DecC(yP−1)S−1. (1)

For the same code C, we consider the modification McEl(C) of the McEliece type
cryptosystem described in [7], where encryption rule has the form

{x}McEl
pk = {x ‖ v}McE

pk = y, x ∈ Flq, v ∈R Fk−lq . (2)

To decrypt the ciphertext y, it is enough to apply the rule (1) and discard the last k − l
symbols:

{y}McEl
sk = {y}McE

sk (Il ‖ On−l)
>,

where Il is the unit (l × l) matrix, Ok−l is the zero (k − l × k − l) matrix, and A> is the
transposed matrix A.

On the basis of the cryptosystem McEl(C) we construct a new cryptosystem 2McEl(C),
in which the message of length l is encrypted twice according to the rule (2):

{x}2McEl
pk = {x}McEl

pk ‖ {x}McEl
pk = y, x ∈ Flq.

Then the decryption rule can be written in the form:

{y}2McEl
sk =

{
y (In ‖ On)>

}McEl

sk
.

Consider a subset Gl of permutations group Sk acting on the elements of the set
{1, . . . , k} such that for any π ∈ Gl the condition π(1) < . . . < π(l) is satisfied. The set
{π(1), . . . , π(l)} is denoted by ωπ. Note that |Gl| = Cl

k(k − l)!, since only Cl
k subsets of

cardinality l are in the set of k elements, and for each such subset ω there is a class
G(ω) ⊆ Sk permutations with cardinality |G(ω)| = (k − l)!. With every permutation π
from Gl we associate a permutation (k×k)-matrix Rπ. Consider the cryptosystem ω2McE′l
with the encryption rule

{x}ω2McE′l
pk = {(x ‖ v1)Rπ}McE

pk ‖ {(x ‖ v2)Rπ}McE
pk = y, (3)

where x ∈ Flq,vi ∈R Fk−lq , i = 1, 2, π ∈R Gl. For decryption, in addition to the secret key sk,
the recipient needs to know the matrix Rπ. Then the decryption rule takes the form

{y}ω2McE′l
sk,Rπ

= ({y (In ‖ On)>}McE
sk ·R−1

π )(Il ‖ Ok−l)
>.
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Finally, we construct a cryptosystem ω2McEl based on previous one with the following
restriction: supp(v1 − v2) = {1, . . . , k} \ ωπ. Then, for decryption, the recipient does not
need the matrix Rπ. To find ω, it suffices to compute the vector

z = {y (In ‖ On)>}McE
sk − {y (On ‖ In)>}McE

sk

and find its support supp (z). Then the decryption rule takes the form

{y}ω2McEl
sk = (z ·R−1

π′ )(Il ‖ Ok−l)
>, π′ ∈ Gl(ω), ω = supp (z) .

3. Semantic security of McEliece type cryptosystems
3.1. S e c u r i t y a s s u m p t i o n s

Let McE(C) be the basic McEliece cryptosystem with security parameter N .
The security of McE(C) is based on the problem of decoding a random linear code [5].
Note that, if there is no polynomial algorithm capable of distinguishing the (k× n)-matrix
of the public key of the McE(C) cryptosystem from a random (k × n)-matrix with non-
negligible probability in N , then the cryptosystem McEl(C) has the IND-CPA property [7].

Further we will use two additional assumptions.
Assumption 1. There is no polynomial algorithm that can distinguish two random

noisy codewords of the code C from random vectors with a non-negligible probability in
security parameter N .

The assumption is based on the fact that at present there are no such polynomial
algorithms. For example, recent algorithms [13 – 15] that solve the given problem are not
polynomial.

Assumption 2. There is no polynomial algorithm that takes as input ciphertext c
of the McE(C) and the number l ∈ N, and outputs 0 if c corresponds to an information
message of a weight less than l and outputs 1 if c corresponds to an information message
of weight l with non-negligible distinguishing advantage in the N .

3.2. I N D - C PA s e c u r i t y o f 2McEl(C)

It is easy to verify that the cryptosystem McE(C) is not IND-CPA-secure for an arbitrary
[n, k, d]-code C. At the same time, the cryptosystem McEl(C) on the Goppa code C is IND-
CPA-secure [7].

Let us consider the matrix G̃ of the public key of the cryptosystem McEl(C) in the form

G̃ =

(
G̃1

G̃2

)
,

where G̃1 is (l × n)-matrix and G̃2 is (kl × n)-matrix. To prove IND-CPA-security of
cryptosystem 2McEl(C) consider the algorithm D = (D1,D2) and following experiment
(Algorithm 3).

It is important to note that the algorithm D2 takes a decision only by two vectors and
does not accumulate vectors.

Suppose that there exists a polynomial g(N), a polynomial algorithm D′ = (D′1,D′2)
and an infinite subsequence of natural numbers (N1, N2, . . .) such that for all i = 1, 2, . . .
the following inequality holds:

P[Expdif1
G̃,t,D′

(Ni) = 1] >
1

2
+

1

q(Ni)
. (4)
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Algorithm 3. Expdif1
G̃,t,D

1: m0 ← D1(N);
2: b← {0, 1}.
3: If b = 1, then c = {m0}2McEl

(G̃,t)
, otherwise c ∈R F2n

q .
4: B ← D2(c,m0);
5: If B = b, return 1, otherwise 0.

In other words, the algorithm D′ with a non-negligible probability distinguishes one pair of
ciphertexts corresponding to one information message from a pair of random vectors. Let’s
construct one more algorithm WD and experiment Expdif2

G̃2,t,WD
(Algorithm 4).

Algorithm 4. Expdif2
G̃2,t,WD

1: b← {0, 1}.
2: If b = 0, then y1,y2 ∈R Fnq , otherwise yi = riG̃2 + ei, ri ∈R Fk−lq , wt(ei) 6 t, i = 1, 2.
3: B ←WD(y1,y2, G̃2, t).
4: If B = b, then return 1, else 0.

In the experiment Expdif2
G̃2,t,WD

, given algorithm WD distinguishes two random noisy

codewords of the code with the generator matrix G̃2 from random vectors. From here,
using D′ one can construct polynomial algorithm WD′ to solve this distinguishing problem
(Algorithm 5).

Algorithm 5. WD′(y1,y2, G̃2, t)

1: m0 ← D′1(N);
2: c′ = (m0G̃1 + y1) ‖ (m0G̃1 + y2).
3: Return D′2(c′,m0).

Given (4), we get : P[Expdif2
G̃2,t,WD′

] >
1

2
+

1

q(Ni)
. But it contradicts the assumption 1.

Hence we obtain that for any polynomial algorithm D′ and any polynomial q(N), the
following inequality holds: ∣∣∣∣P[Expdif1

G̃,t,D′
(N) = 1]− 1

2

∣∣∣∣ < 1

q(N)
. (5)

Note that for the experiment Expdif3
G̃,t,M

(Algorithm 6) the probability of occurrence
of 1 is also differs from 1/2 by a negligibly small function. Otherwise, based on
corresponding algorithm, one can construct an algorithm WD′′ with not negligible
|P[Expdif2

G̃2,t,WD′′
(N) = 1]− 1/2| in N .

Hence it follows that there is no polynomial algorithm Q that distinguishes the
ciphertext {m0}2McEl

(G̃,t)
from [{m1}McEl

(G̃,t)
‖ {m2}McEl

(G̃,t)
] with a probability that is not negligible

greater than 1/2 for anym0,m1,m2. Otherwise, we can construct the polynomial algorithm
D̃ = (D̃1, D̃2) (see Algorithm 7) for the experiment Expdif1

G̃,t,M
, which with a non-negligible

probability would distinguish a pair of ciphertexts from a pair of random vectors, which
contradicts the assumption.
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Algorithm 6. Expdif3
G̃,t,M

1: m1,m2 ←M1(N);
2: b← {0, 1}.
3: If b = 1, then c = [{m1}McEl

(G̃,t)
‖ {m2}McEl

(G̃,t)
], otherwise c ∈R F2n

q .
4: b′ ←M2(c,m1,m2).
5: If B = b, return 1, otherwise 0.

Algorithm 7. D̃2(c0,m0)

1: m1,m2 ←M1(N);
2: c1 = {m1}McEl

pk ‖ {m2}McEl
pk + c;

3: v ← {0, 1}.
4: Return Q(cv,m0,m1 + m0,m2 + m0).

Theorem 1. If the cryptosystem McEl(C) has the IND-CPA property, then the
cryptosystem 2McEl(C) also has this property .

Proof. Suppose that the cryptosystem 2McEl(C) does not have the IND-CPA property.
Then there exists a polynomial algorithm (adversary) A′ = (A′1,A′2), the polynomial p(N)
and an infinite subsequence of natural numbers (N1, N2, . . .) such that for all i = 1, 2, . . .
the following inequality holds:

Advcpa
2McEl(C),A′(Ni) >

1

p(Ni)
. (6)

On the basis of the algorithm A′ we construct the algorithm A′′ = (A′1,A′′2) for the attack
on the cryptosystem McEl. The algorithm A′′2 takes as input the ciphertext c = {mb}McEl

pk

of the cryptosystem McEl(C) and two messages m0, m1; the algorithm A′′2 randomly picks
up the value v from {0, 1} and returns the result A′2(c ‖ {mv}McEl(C)

pk ). Then

P[Expcpa
McEl,A′′ = 1] =

1

2
P[A′2({M}McEl(C)

pk ‖ {M′}McEl(C)
pk ) = 1|M = M′]+

+
1

2
P[A′2({M}McEl(C)

pk ‖ {M′}McEl(C)
pk ) = 1|M 6= M′].

From (6) we get |P[A′2({M}McEl(C)
pk ‖ {M′}McEl(C)

pk ) = 1|M = M′] − 1/2| > 1/p(Ni), and
from the explanation , which comes after the (5), we have∣∣∣∣P[A′2({M}McEl(C)

pk ‖ {M′}McEl(C)
pk ) = 1|M 6= M′]− 1

2

∣∣∣∣ < 1

q(N)
.

In this way, ∣∣∣∣P[Expcpa
McEl,A′′ = 1]− 1

2

∣∣∣∣ > 1

p(Ni)
± φ(N),

where φ(N) is a negligibly small function. Since
1

p(Ni)
± φ(N) is not a negligibly small

function, we have obtained that the cryptosystem McEl(C) does not have the property
IND− CPA, which contradicts the condition.
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3.3. I N D - C PA p r o p e r t y f o r ω2McE′l(C)

Lemma 2. If the cryptosystem 2McEl(C) has the IND-CPA property, then the
cryptosystem ω2McE′l(C) also has this property.

Proof. The encryption rule (3) can be rewritten as

{x}ω2McE′l
pk = ((x ‖ v1)RπG̃⊕ e1) ‖ ((x ‖ v2)RπG̃⊕ e2).

Denote G̃′ = RπG̃. Then we get

{x}ω2McE′l
pk = ((x ‖ v1G̃

′ ⊕ e1) ‖ ((x ‖ v2)G̃′ ⊕ e2) = {x}McEl
pk′ ‖ {x}

McEl
pk′ = {x}2McEl

pk′ ,

where pk′ = (G̃′, t). Thus by construction ω2McE′l(C) is the same as 2McEl(C) but with
different pair (pk, sk). From here ω2McE′l(C) also has the IND-CPA property.

Note, that adversary doesn’t know the relationships between (pk, sk) and (pk′, sk′).
From here adding a permutation in the 2McEl(C) cryptosystem with the help of the set ω
can only increase the security.

3.4. IND− CPA - p r o p e r t y f o r ω2McEl(C)

Theorem 2. The cryptosystem ω2McEl(C) has the IND-CPA property if the
cryptosystem ω2McE′l(C) has this property.

Proof. For the proof it is sufficiently to show that the ciphertexts of cryptosystems
ω2McEl(C) and ω2McE′l(C), corresponding to one information message, are indistinguishable
by the class of algorithms A. We fix an arbitrary m and consider the ciphertexts of
cryptosystems ω2McEl(C) and ω2McE′l(C) as a system of the form:

{m}ω2McEl
pk = X ‖ Y ,

{
X = mG̃1

ω ⊕ r1G̃
2
ω ⊕ e1,

Y = mG̃1
ω ⊕ (1⊕ r1)G̃2

ω ⊕ e2,

{m}ω2McE′l
pk = X ‖ Y ′,

{
X = m1G̃

1
ω ⊕ r1G̃

2
ω ⊕ e′1,

Y ′ = m1G̃
1
ω ⊕ r2G̃

2
ω ⊕ e′2.

Denote r′2 = r1 ⊕ r2. Then the systems can be rewritten:

{m}ω2McEl
pk = X ‖ Y ,

{
X = mG̃1

ω ⊕ r1G̃
2
ω ⊕ e1,

Y = mG̃1
ω ⊕ r1G̃

2
ω ⊕ 1G̃2

ω ⊕ e2,

{m}ω2McE′l
pk = X ‖ Y ′,

{
X = mG̃1

ω ⊕ r1G̃
2
ω ⊕ e′1,

Y ′ = mG̃1
ω ⊕ r1G̃

2
ω ⊕ r′2G̃

2
ω ⊕ e′2.

Now we consider the last parts of Y and Y ′: LP = 1G̃2
ω ⊕ e2 and LP ′ = r′2G̃

2
ω ⊕ e′2.

Denote Z as Y = Z ⊕ LP and Z ′ as Y ′ = Z ′ ⊕ LP ′. Since (5) we get that the rest X ‖ Z ′
does not provide any information about LP . One should note that X ‖ Z ′ = X ‖ Z. From
here X ‖ Z ′ does not provide any information about LP ′. Consequently, to distinguish
the ciphertexts one should distinguish LP and LP ′. A vector LP of the form 1G̃2

ω ⊕ e1

can be rewritten as (0 ‖ 1)RπG̃ ⊕ e1. Thus, for a random choice of ω, LP is a ciphertext
of basic McEliece cryptosystem corresponding to a random information message with a
fixed weight l. The vector LP ′ = (r1 ⊕ r2)G̃2

ω ⊕ e1 can similarly be rewritten as (0 ‖ r1 ⊕
⊕r2)RπG̃⊕e1 and is also a ciphertext of the basic McEliece cryptosystem, but corresponding
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to a random information message of arbitrary weight not exceeding l. By Assumption 2,
algorithm for distinguishing vectors of this kind does not exist. Hence the ciphertexts of
cryptosystems ω2McEl(C) and ω2McE′l(C), corresponding to one information message, are
indistinguishable by the class of algorithms A.

4. Implementation of ω2McE

We suppose a possible implementation of ω2McE to modify k-repetition scheme [8].
The idea of k-repetition scheme is to encrypt information message k-times using INC-
CPA-secure cryptosystem Σ. Encryption of k-repetition scheme has the form {m}Σ

pk1
‖

‖ {m}Σ
pk2
‖ . . . ‖ {m}Σ

pkk
. Note that to encryption requires k unique key pairs. We suggest

use ω2McE in k-repetition scheme with some modifications. The idea of our modification is
to encrypt k/2 information messages using only one set ω. So encryption will take the form
{m1}ω2McE

pk1
‖ {m2}ω2McE

pk2
‖ . . . ‖ {mk/2}ω2McE

pkk/2
. In fact, it also requires to encrypt k-times.

Let us remind that k is the length of signature key and should be more than 512. However,
our construction transmits k/2 information messages. From here, with this approach, the
data transfer rate will increase by k/2 times.
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