УДК 546.811.57: 546.86.22 DOI: 10.17223/24135542/16/5

Ш.Г. Мамедов

Институт катализа и неорганической химии им. академика М.Ф. Нагиева Национальной АН Азербайджана (Республика Азербайджан, Баку)

Квазибинарный разрез Ag₂SnS₃-Sb₂S₃

В работе представлены результаты исследования взаимодействия в системе Ag₂SnS₃-Sb₂S₃ и построена T-х диаграмма состояния. Результаты термического анализа свидетельствуют о наличии остановок на кривых нагревания при 820-935 К. Термические эффекты на кривых нагревания эндотермические, обратимые. Результаты рентгенофазового анализа хорошо согласуются с данными микроструктурного анализа и подтверждают образование в системе Ag₂SnS₃-Sb₂S₃ области твердых растворов на основе исходных компонентов. На дифрактограммах твердых растворов на основе Ag₂SnS₃ присутствуют рефлексы, характерные для моноклинной структуры. В твердых растворах на основе Sb₂S₃ присутствуют рефлексы, характерные для ромбической структуры. Изучение микроструктуры показало, что сплавы, содержащие 0-10 и 97-100 мол. % Ag₂SnS₃ однофазные, 10-97 мол. % Ag₂SnS₃ – двухфазные. С увеличением температуры образование твердых растворов на основе Sb_2S_3 достигает 12 мол. % Ag₂SnS₃ при эвтектической температуре. Установлено, что сплавы составов 0–10 мол. и 97–100 мол. % Ag₂SnS₃ являются твердыми растворами. Твердые растворы на основе Sb₂S₃ кристаллизуются в ромбической сингонии. С увеличением содержания Ag_2SnS_3 параметр ромбической решетки увеличивается для чистого Sb_2S_3 . На основании полученных результатов построена диаграмма состояния системы Ag₂SnS₃-Sb₂S₃. Установлено, что система Ag₂SnS₃-Sb₂S₃ является квазибинарным сечением тройной системы Ag₂S-SnS₂-Sb₂S₃ и относится к эвтектическому типу. Координаты эвтектической точки: 60 мол. % Ag₂SnS₃ при 750 К. Состав эвтектической смеси определен построением треугольника Таммана.

Ключевые слова: Ag₂SnS₃-Sb₂S₃, фазовая диаграмма, система, эвтектика, твердый раствор, рентгенографический анализ.

Введение

Исследование новых функциональных материалов является важнейшим фактором развития современной науки и техники. Тиостаннаты серебра относятся к числу таких материалов [1–8].

Полупроводники группы $A^{V}_{2}B^{V_{3}^{r}}$ привлекают пристальное внимание исследователей благодаря уникальным свойствам и перспективе прикладных применений [9–14]. В частности, пленки Sb₂S₃ и Sb₂Se₃ вызывают интерес с точки зрения их применения в микроволновых, коммутационных и оптикоэлектронных устройствах. Показано, что Sb₂S₃ может быть перспективным при использовании в фотогальванических ячейках для видимой и

ближней инфракрасной области спектра, так как имеет высокий коэффициент поглощения ($\alpha > 103 \text{ см}^{-1}$) и оптимальную ширину запрещенной зоны 1,78–2,5 эВ. Эти материалы могут также найти применение в термо-электрических устройствах охлаждения. Соединение Sb₂S₃ плавится конгруэнтно при 820 К и кристаллизуется в ромбической сингонии с параметрами элементарной ячейки: а = 11,20; b = 11,28; c = 3,83Å [15–20]. Боковые системы, составляющие квазитройную Ag₂S-SnS₂-Sb₂S₃, подробно изучены. Авторы [21–25] установили существование трех соединений серебра составов: Ag₈SnS₆, Ag₂SnS₃ и Ag₂Sn₂S₅. Соединение Ag₂SnS₃ характеризуется конгруэнтным плавлением при 936 К и кристаллизуется в моноклинней сингонии: Пр. г., Pna2₁ a = 6,27 Å; b = 5,793 Å; c = 13,719 Å; β = 93,27° [21]. Ag₂Sn₂S₅ образуется по перитектической реакции при 955 К [21]. Авторы [25] тоже изучали данную систему. Они определили, что в системе образуются соединения составов Ag₄Sn₃S₈, Ag₈SnS₆ и Ag₂SnS₃.

Одним из путей поиска и разработки методов направленного синтеза новых многокомпонентных фаз и материалов является изучение фазовых равновесий. Цель исследования — изучение фазовой диаграммы Ag_2SnS_3 -Sb₂S₃ и определение границ твердых растворов на основе обоих компонентов. В данной работе представлены результаты исследования взаимодействия в системе Ag_2SnS_3 -Sb₂S₃ и построена T-х диаграмма состояния.

Методика эксперимента

Сплавы для исследования системы $Ag_2SnS_3-Sb_2S_3$ синтезировали из лигатур. Лигатуры Ag_2SnS_3 и Sb_2S_3 синтезированы из элементарных компонентов чистотой не менее 99,999% в откачанных кварцевых ампулах в однозонной печи при температуре 1 000 и 825 К. Поликристаллические образцы сплавов системы $Ag_2SnS_3-Sb_2S_3$ получали расплавлением исходных сульфидов в откачанных кварцевых ампулах при температуре 825–1 000 К. После окончания синтеза образцы отжигали в течение 270 ч при температуре 500 К.

Сплавы исследовали методами физико-химического анализа. Дифрактограммы снимали на установке D2 Phaser (Bruker, Германия) (СиК_а излучении, Ni-фильтр), дифференциальный термический анализ (ДТА) выполняли на низкочастотном термографе HTP-70 в температурном интервале 25–900 °С. Скорость нагрева 10°/мин. Термопара хромель-алюмелевая, в качестве стандарта использовали оксид алюминия. Микроструктурный анализ проводили на микроскопе МИМ-7, а микротвёрдость измеряли на микротвёрдомере ПМТ-3 при нагрузках, выбранных в результате измерения микротвердости каждой фазы. Плотность сплавов измерялась стандартным пикнометрическим методом. В качестве пикнометрической жидкости применялся толуол.

Результаты эксперимента

Для исследования системы $Ag_2SnS_3-Sb_2S_3$ синтезировали 12 сплавов. ДТА проводили на отожженных образцах сплавов системы $Ag_2SnS_3-Sb_2S_3$. Результаты анализа свидетельствуют о наличии остановок на кривых нагревания при 820–935 К. Термические эффекты на кривых нагревания эндотермические, обратимые (табл. 1).

Таблица 1

Состав, мол. %		Термические эффекты		Плотность,	Фазовый
Ag ₂ SnS ₃	Sb ₂ S ₃	солидус	ликвидус	г/см ³	состав
100	0,0	-	935	4,580	τ (Ag ₂ SnS ₃)
98	2,0	900	930	4,578	τ
95	5,0	870	920	4,575	τ+ε
90	10	750	885	4,570	τ+ε
80	20	750	845	4,565	τ+ε
70	30	750	800	4,560	τ+ε
60	40	750	(эвт.)	4,554	τ+ε
50	50	750	770	4,553	$\tau + \epsilon$
40	60	750	785	4,552	τ+ε
30	70	750	800	4,681	τ+ε
20	80	750	810	4,670	τ+ε
10	90	775	790	4,660	3
5,0	95	790	800	4,650	3
0,0	100	-	820	4,640	$\epsilon(Sb_2S_3)$

Результаты ДТА, измерения плотности и микроструктуры сплавов разреза Ag₂SnS₃-Sb₂S₃

Результаты рентгенофазового анализа хорошо согласуются с данными микроструктурного анализа и подтверждают образование в системе $Ag_2SnS_3-Sb_2S_3$ области твердых растворов на основе исходных компонентов. Гомогенность твердых растворов определяли рентгеновским методом. Проведенные исследования показали, что на дифрактограммах твердых растворов на основе Ag_2SnS_3 присутствуют рефлексы, характерные для моноклинной структуры. В твердых растворах на основе Sb_2S_3 присутствуют рефлексы, характерные для ромбической структуры (рис. 1).

Для определения границ растворимости твердых растворов были синтезированы сплавы 99, 98, 97, 96, 94, 92, 90, 89, 88 мол. % исходных компонентов. Эти сплавы отжигались в течение 300 ч 600 и 450 К и затем закалялись. После тщательного изучения микроструктуры этих сплавов определялись границы растворимости.

Изучение микроструктуры показало, что сплавы, содержащие 0–10 и 97–100 мол. % Ag_2SnS_3 , однофазные, 10–97 мол. % Ag_2SnS_3 – двухфазные. С увеличением температуры образование твердых растворов на основе Sb_2S_3 достигает 12 мол. % Ag_2SnS_3 при эвтектической температуре. Установлено, что сплавы составов 0–10 мол. и 97–100 мол. % Ag_2SnS_3 являются твердыми растворами. Твердые растворы на основе сульфида-сурьмы (Sb_2S_3) кристаллизуются в ромбической сингонии. С увеличением содержания Ag_2SnS_3 параметр ромбической решетки возрастает для чистого Sb_2S_3 (табл. 2).

Рис. 1. Дифрактограмма сплавов системы Ag₂SnS₃-Sb₂S₃: $I - Sb_2S_3$; 2 - 10 мол. % Ag₂SnS₃; 3 - 11 мол. % Ag₂SnS₃; 4 - 96 мол. % Ag₂SnS₃; 5 - 97 мол. % Ag₂SnS₃; $6 - Ag_2SnS_3$

Таблица 2

Параметры кристаллической решетки твердых растворов (Sb₂S₃)_{1-x}(Ag₂SnS₃)_x

Состав,	Параметры решетки, Å				
мол. % Ag ₂ SnS ₃	а	b	с	V, Å ³	Сингония
0,0	11,20	11,28	3,83	483,87	Ромбическая
2,0	11,25	11,31	3,90	496,22	Ромбическая
4,0	11,29	11,33	3,92	501,48	Ромбическая
6,0	11,34	11,36	3,93	506,27	Ромбическая
8,0	11,41	11,40	3,95	513,79	Ромбическая
10	11,46	11,43	3,97	519,57	Ромбическая

На основе полученных результатов физико-химического анализа построена T-х диаграмма разреза Ag_2SnS_3 - Sb_2S_3 квазитройной системы $Ag_2S-SnS_2-Sb_2S_3$ (рис. 2).

Как видно из рис. 2, система Ag_2SnS_3 - Sb_2S_3 является квазибинарным сечением тройной системы Ag_2S - SnS_2 - Sb_2S_3 и относится к эвтектическому типу. Координаты эвтектической точки: 60 мол. % Ag_2SnS_3 при 750 К. Состав эвтектической смеси определен построением треугольника Таммана.

Рис. 2. Т-х диаграмма системы Ag₂SnS₃-Sb₂S₃

Ликвидус системы состоит из двух ветвей первичной кристаллизации є и т. Ветви первичный кристаллизации є и т пересекаются в эвтектической точке.

Монокристаллы твердых растворов $(Sb_2S_3)_{1-x}(Ag_2SnS_3)_x$ были получены методом Бриджмена–Стокбаргера (табл. 3).

Таблица З

Оптимальный режим выращивания монокристаллов твердых растворо	B			
на основе Sb ₂ S ₃				

Состав	Т ₁ –Т ₂ , К	Скорость пере- мещения печи, мм/ч	Размер моно- кристаллов, мм	Масса моно- кристаллов, г
$(Sb_2S_3)_{0,997}$ - $(Ag_2SnS_3)_{0,003}$	700-800	3,0	7 × 16	6,2
$(Sb_2S_3)_{0,995}$ - $(Ag_2SnS_3)_{0,005}$	700-800	3,0	7 × 16	6,4
$(Sb_2S_3)_{0,993}$ - $(Ag_2SnS_3)_{0,007}$	700-800	3,0	7 × 18	6,5

Для выращивания монокристалла $(Sb_2S_3)_{1-x}(Ag_2SnS_3)_x$ предварительно синтезировали поликристаллические сплавы 3–5 г, затем измельчали и переносили в ампулу. Скорость перемещения фронта кристаллизации составила 3–5 мм/ч, в зоне кристаллизации градиент температуры 0,1–0,4 мм/ч. Таким образом, были получены однородные монокристаллические образцы длиной 20–30 мм и диаметром 15–20 мм $(Sb_2S_3)_{1-x}(Ag_2SnS_3)_x$, пригодные для дальнейших исследований.

Заключение

Методами физико-химического анализа (рентгенофазового, дифференциального, термического, микроструктрного) впервые изучена и построена T-х фазовая диаграмма системы $Ag_2SnS_3-Sb_2S_3$. Установлено, что система является квазибинарным сечением квазитройной системы $Ag_2S-SnS_2-Sb_2S_3$ и относится к эвтектическому типу.

В системе Ag_2SnS_3 - Sb_2S_3 обнаружили образование твердых растворов на основе исходных компонентов. Растворимость на основе тиостанната серебра при комнатной температуре 3 мол. % Sb_2S_3 , а на основе Sb_2S_3 10 мол. % Ag_2SnS_3 .

Литература

1. Messina S., Nair M.T.S., Nair P.K. Solar cells with Sb_2S_3 absorber films // Thin Solid Films. 2008. № 517 (7). P. 2503–2507. DOI: 10.1016/j.tsf.2008.11.060

2. Maghraoui-Meherzi H., Ben Nasr T., Kamoun N., Dachraoui M. Structural, morphology and optical properties of chemically deposited Sb_2S_3 thin films // Physica B: Condensed Matter. 2010. № 405 (15). P. 3101–3105. DOI: 10.1016/j.physb.2010.04.020

3. Maghraoui-Meherzi H., Ben Nasr T., Kamoun N., Dachraoui M. Physical properties of chemically deposited Sb₂S₃ thin films // Comptes Rendus Chimie. 2011. № 14 (5). P. 471–475. DOI: 10.1016/j.crci.2010.10.007

4. Arun P., Vedeshwara A.G. Phase modification by instantaneous heat treatment of Sb₂S₃ films nd their potential for photothermal optical recording // J. Appl. Phys. 1996. No 79 (8). P. 4029–4036. DOI: 10.1063/1.361832

5. Perales F., Agullo-Rueda F., Lamela J., Heras C. et al. Optical and structural properties of Sb_2S_3/MgF_2 multilayers for laser applications // J. Phys. D: Appl. Phys. 2008. Nº 41. P. 045403. DOI: 10.1088/0022-3727/41/4/045403

6. Perales F., Lifante G., Agullo-Rueda F., Heras C. et al. Optical and structural properties in the amorphous to polycrystalline transition in Sb₂S₃ thin films // J. Phys. D: Appl. Phys. 2007. \mathbb{N} 40. P. 2440–2444. DOI: 10.1088/0022-3727/40/8/005

7. Avellaneda D., Nair M.T., Nair P.K. Cu₂SnS₃ and Cu₄SnS₄ thin films via chemical deposition for photovoltaic application // J. Electrochem. Soc. 2010. № 157 (6). P. 346–352.

8. Fiechter S., Martinez M., Schmidt G. et al. Phase relations and optical properties of semiconducting ternary sulfides in the system Cu-Sn-S // J. Phys. Chem. Solids. 2003. № 64. P. 1859–1862. DOI: 10.1016/S0022-3697(03)00172-0

9. Gurieva G., Levchenko G., Levchenko S. et al. Characterization of Cu₂SnSe₃ by spectroscopic ellip sometry // Thin Solid films. 2013. Vol. 535, № 2. P. 384–386. DOI: 10.1016/j.tsf.2012.11.104

10. Kim K.M.; Tampo H.; Shibata H. et al. Growth and characterization of coevaporated Cu_2SnSe_3 thin films for photovoltaic applications // Thin Solid Films. 2013. No 536 (1). P. 111–114. DOI: 10.1016/j.tsf.2013.03.119

11. Delgado G.E., Mora A.Y., Marcano G. et al. Crystal structure refinement of the semiconducting compound Cu₂SnSe₃ from X-ray powder diffraction data // Mater. Res. Bull. 2003. № 38. P. 1949–1955. DOI: 10.1016/j.materresbull.2003.09.017

12. Parasyuk O.V., Gulay L.D., Piskach L.V. et al. The $Ag_2Se-HgSe-SnSe_2$ system and the crystal structure of the $Ag_2HgSnSe_4$ compound // J. Alloys and Compounds. 2002. No 339. P. 140–143. DOI: 10.1016/S0925-8388(01)01985-5

13. Parasyuk O.V., Chykhrij S.I., Bozhko V.V. et al. Phase diagramm of the Ag₂S-HgS-SnS₂ system and single crystal prepartion, crystal structure and properties of Ag₂HgSnS₄ // J. Alloys and Compounds. 2005. Nº 399. P. 32–37. DOI: 10.1016/j.jallcom.2005.03.008

14. Parasyuk O.V., Fedorchuk A.O., Kogut Yu.M. et al. The Ag_2S -HgS-GeS₂ system: Phase diagram, glass-formation region and crystal structure Ag_2ZnGeS_4 // J. Alloys and Compounds. 2010. No 500 (1). P. 26–29. DOI: 10.1016/j.jallcom.2010.03.198

15. Самсонов Г.В., Дроздова С.В. Сульфиды. М. : Металлургия, 1972. С. 169–190.

16. Bayliss P., Nowaski W. Refinement of the structure of stibnite Sb₂S₃ // Zeitschrift für Kristallographie. 1972 № 135 (2). P. 308–315.

17. Пополитов В.И. Гидротермальная кристаллизация Sb₂S₃ // Кристаллография. 1968. № 14 (2). С. 545–548.

18. Aliev O.M., Asadov M.M., Azhdarova D.S. et al. Polythermal Section FeSb₂S₄–FeSm₂S₄ of the FeS-Sb₂S₃-Sm₂S₃ System. Russ // J. Inorg. Chem. 2018. \mathbb{N} 63. P. 833–836. DOI: 10.1134/S0036023618060037

19. Aliyev O.M., Ajdarova D.S., Agayeva R.M. et al. Phase Relations along the $Cu_2S(Sb_2S_3, PbSb_2S_4, Pb_5Sb_4S_{11})$ -PbCuSbS₃ Joins in the Pseudoternary System Cu_2S -PbS-Sb₂S₃ and Physical Properties of $(Sb_2S_3)_{1-x}$ (PbCuSbS₃)_x Solid Solutions // Inorg Mater. 2018. No 54. P. 1199–1204. DOI: 10.1134/S0020168518120014

20. Bakhtiyarly I.B., Azhdarova D.S., Mamedov Sh.G. Pb-Sb-S ternary system // Russian Journal of Inorganic Chemistry. 2013. № 58 (6). P. 728–733.

21. Кохан О.П. Взаимодействия в Ag₂X-B^{IV}X₂ (B^{IV}-Si, Ge, Sn; X-S, Se) системах и свойства соединений : автореф. дис. ... канд. хим. наук. Ужгород, 1996. 49 с.

22. Wang N., Fan A.K. An experimental study of the Ag₂S-SnS₂ pseudobinary join // Neues Jahrb. mineral, Abh. 1989. № 160. P. 33–36.

23. Wang N. New data for Ag_8SnS_6 (canfeildite) and Ag_8GeS_6 (argyrodite). Neues Jahrb. Mineral. Monatsh, 1978. P. 269–272.

24. Gorochov O. Les composés Ag_8MX_6 (M=Si, Ge, Sn et X=S, Se, Te) // Bull. Soc. Chim. Fr. 1968. No 6. P. 2263–2275.

25. Kitazawa H., Kitakaze A., Sugaki A. Phase relation on the Ag-Sn-S system // Collected Abstract Mineral. Soc. Japan. 1985. № 19.

Информация об авторе:

Мамедов Шарафат Гаджиага оглы, доктор PhD по химии, доцент, Институт катализа и неорганической химии имени академика М. Нагиева Национальной АН Азербайджана (Баку, Азербайджан). E-mail: azxim@mail.ru

Tomsk State University Journal of Chemistry, 2019, 16, 47-55. DOI: 10.17223/24135542/16/5

Sh.H. Mammadov

Institute of Catalysis and Inorganic Chemistry. Academician M.F. Nagiyev National Academy of Sciences of Azerbaijan (Baku, Azerbaijan)

Quasibinary section Ag₂SnS₃-Sb₂S₃

The results of a study of the interaction in the Ag_2SnS_3 -Sb₂S₃ system are presented and a T-x state diagram is constructed. The results of thermal analysis indicate the presence of stops on the heating curves at 820–935 K. The thermal effects on the heating curves are endothermic and reversible. The results of X-ray phase analysis are in good agreement with the data of microstructural analysis and confirm the formation in the Ag_2SnS_3 -Sb₂S₃ system of solid solutions based on the initial components. The diffractograms of solid solutions based on Ag_2SnS_3 contain reflects of a monoclinic structure. The reflects of rhombic structure are presented in solid solutions based on Sb_2S_3 . The study of the microstructure showed that alloys containing 0–10 and 97– 100 mol % Ag_2SnS_3 are single phase, 10–97 mol % Ag_2SnS_3 at a eutectic temmation of solid solutions based on Sb_2S_3 reaches 12 mol % Ag_2SnS_3 at a eutectic temperature during increasing temperature. It was found that alloys of 0-10 mol and 97-100 mol % of Ag_2SnS_3 compositions are solid solutions. Sb_2S_3 -based solid solutions crystallize in rhombic syngony. The rhombic lattice parameter increases for pure Sb_2S_3 by increasing Ag_2SnS_3 content. The phase diagram of the Ag_2SnS_3 -Sb $_2S_3$ system is constructed based on the obtained research results. It was found that the Ag_2SnS_3 -Sb $_2S_3$ system is a quasibinary section of the ternary Ag_2S -SnS $_2$ -Sb $_2S_3$ system and is of the eutectic type. Coordinates of the eutectic point: 60 mol% Ag_2SnS_3 at 750 K. The composition of the eutectic mixture is determined by constructing the Tamman triangle.

Keywords: Ag₂SnS₃-Sb₂S₃, phase diagram, system, eutectic, solid solution, X-ray analysis

References

1. Messina S.; Nair M.T.S.; Nair P.K. Solar cells with Sb_2S_3 absorber films. Thin Solid Films. 2008, 517 (7), 2503–2507. DOI: 10.1016/j.tsf.2008.11.060

2. Maghraoui-Meherzi H.; Ben Nasr T.; Kamoun N.; Dachraoui M. Structural, morphology and optical properties of chemically deposited Sb_2S_3 thin films. Physica B: Condensed Matter. 2010, 405 (15), 3101–3105. DOI: 10.1016/j.physb.2010.04.020

3. Maghraoui-Meherzi H.; Ben Nasr T.; Kamoun N.; Dachraoui M. Physical properties of chemically deposited Sb_2S_3 thin films. Comptes Rendus Chimie. 2011, 14 (5), 471–475. DOI: 10.1016/j.crci.2010.10.007

4. Arun P.; Vedeshwara A.G. Phase modification by instantaneous heat treatment of Sb_2S_3 films and their potential for photothermal optical recording. J. Appl. Phys. 1996, 79 (8), 4029–4036. DOI: 10.1063/1.361832

5. Perales F.; Agullo-Rueda F.; Lamela J.; Heras C. et al. Optical and structural properties of Sb_2S_3/MgF_2 multilayers for laser applications. J. Phys. D: Appl. Phys. 2008, 41, 045403. DOI: 10.1088/0022-3727/41/4/045403

6. Perales F.; Lifante G.; Agullo-Rueda F.; Heras C. et al. Optical and structural properties in the amorphous to polycrystalline transition in Sb_2S_3 thin films. J. Phys. D: Appl. Phys. 2007, 40, 2440–2444. DOI: 10.1088/0022-3727/40/8/005

7. Avellaneda D.; Nair M.T.; Nair P.K.Cu₂SnS₃ and Cu₄SnS₄ thin films via chemical deposition for photovoltaic application. J. Electrochem. Soc., 2010, 157 (6), 346–352.

8. Fiechter S.; Martinez M.; Schmidt G. et al. Phase relations and optical properties of semiconducting ternary sulfides in the system Cu-Sn-S. J. Phys. Chem. Solids. 2003, 64, 1859–1862. DOI: 10.1016/S0022-3697(03)00172-0

9. Gurieva G.; Levchenko G.; Levchenko S. et al.Characterization of Cu₂SnSe₃ by spectroscopic ellip sometry. Thin Solid films, 2013, 535, 2, 384–386. DOI: 10.1016/j.tsf.2012.11.104

10. Kim K.M.; Tampo H.; Shibata H. et al. Growth and characterization of coevaporated Cu_2SnSe_3 thin films for photovoltaic applications. Thin Solid Films. 2013, 536 (1), 111–114. DOI: 10.1016/j.tsf.2013.03.119

11. Delgado G.E.; Mora A.Y.; Marcano G. et al. Crystal structure refinement of the semiconducting compound Cu₂SnSe₃ from X-ray powder diffraction data. Mater. Res. Bull. 2003, 38, 1949–1955. DOI: 10.1016/j.materresbull.2003.09.017

12. Parasyuk O.V.; Gulay L.D.; Piskach L.V. et al. The $Ag_2Se-HgSe-SnSe_2$ system and the crystal structure of the $Ag_2HgSnSe_4$ compound. J. Alloys and Compounds. 2002, 339, 140–143. DOI: 10.1016/S0925-8388(01)01985-5

13. Parasyuk O.V.; Chykhrij S.I.; Bozhko V.V. et al. Phase diagramm of the Ag_2S -HgS-SnS₂ system and single crystal prepartion, crystal structure and properties of Ag_2HgSnS_4 . J. Alloys and Compounds. 2005, 399, 32–37. DOI: 10.1016/j.jallcom.2005.03.008

14. Parasyuk O.V.; Fedorchuk A.O.; Kogut Yu.M. et al. The Ag_2S -HgS-GeS₂ system: Phase diagram, glass-formation region and crystal structure Ag_2ZnGeS_4 . J. Alloys and Compounds. 2010, 500 (1), 26–29. DOI: 10.1016/j.jallcom.2010.03.198

15. Samsonov G.V.; Drozdova S.V. Sulfidy (Sulfides), Moscow: Metallurgiya, 1972, 169–190.

16. Bayliss P.; Nowaski W. Refinement of the structure of stibnite Sb_2S_3 . Zeitschrift für Kristallographie. 1972, 135 (2), 308–315.

17. Popolitov V.I. Hydrothermal crystallization of Sb_2S_3 . Kristallografiya, 1968, 14 (2), 545–548.

18. Aliev O.M.; Asadov M.M.; Azhdarova D.S. et al. Polythermal Section $FeSb_2S_4-FeSm_2S_4$ of the $FeS-Sb_2S_3-Sm_2S_3$ System. Russ. J. Inorg. Chem. 2018, 63, 833–836. DOI: 10.1134/S0036023618060037

19. Aliyev O.M.; Ajdarova D.S.; Agayeva R.M. et al. Phase Relations along the $Cu_2S(Sb_2S_3, PbSb_2S_4, Pb_5Sb_4S_{11})$ -PbCuSbS₃ Joins in the Pseudoternary System Cu_2S -PbS-Sb₂S₃ and Physical Properties of $(Sb_2S_3)_{1-x}$ (PbCuSbS₃)_x Solid Solutions. Inorg Mater, 2018, 54, 1199–1204. DOI: 10.1134/S0020168518120014

20. Bakhtiyarly I.B.; Azhdarova D.S.; Mamedov Sh.G. Pb-Sb-S ternary system. Russian Journal of Inorganic Chemistry. 2013, 58 (6), 728–733.

21. Kokhan O.P. The Interactions in $Ag_2X-B^{IV}X_2$ (B^{IV} -Si, Ge, Sn; X-S, Se) Systems and the Properties of Compounds, Doctoral Thesis. Uzhgorod: Uzhgorod State Univ., 1996.

22. Wang N.; Fan A.K. An experimental study of the Ag₂S-SnS₂ pseudobinary join. Neues Jahrb. mineral, Abh, 1989, 160, 33–36.

23. Wang N. New data for Ag_8SnS_6 (canfeildite) and Ag_8GeS_6 (argyrodite). Neues Jahrb. Mineral. Monatsh. 1978, 269–272.

24. Gorochov O. Les composés Ag_8MX_6 (M=Si, Ge, Sn et X=S, Se, Te). Bull. Soc. Chim. Fr., 1968, 6, 2263–2275.

25. Kitazawa, H., Kitakaze, A. and Sugaki, A. Phase relation on the Ag-Sn-S system. Collected Abstract Mineral. Soc. Japan, 19, 1985.

Information about the author:

Mammadov Sharafat Gadzhiaga, PhD in Chemistry, Associate Professor, Institute of Catalysis and Inorganic Chemistry Academician M.F. Nagiyev National Academy of Sciences of Azerbaijan (Baku, Azerbaijan). E-mail: azxim@mail.ru