Особенности адаптивных реакций Betula pendula Roth, произрастающей в условиях породного отвала Кедровского угольного разреза | Вестн. Том. гос. ун-та. Биология. 2017. № 38. DOI: 10.17223/19988591/38/11

Особенности адаптивных реакций Betula pendula Roth, произрастающей в условиях породного отвала Кедровского угольного разреза

Проведен комплекс различных методов диагностики листьев B. pendula на территории породного отвала угольного разреза «Кедровский». Выявлены некоторые особенности адаптивных реакций березы повислой, в том числе изменения водного режима деревьев, в сторону повышения водоудерживающей способности (до 56,5%) и снижения суточных потерь (до 19,8%). В листьях B. pendula установлено увеличение содержания пролина, сахаров и фенольных соединений, но снижение содержания аскорбиновой кислоты. Наименьший размах варьирования у исследуемых растений выявлен по содержанию фенольных соединений и водоудерживающей способности. Совокупный анализ характеристик водного режима и биохимических показателей у березы свидетельствует о взаимной обусловленности этих параметров. Выявленные перестройки в механизмах водного гомеостаза и функционировании антиоксидантной системы B. pendula позволяют рассматривать их как приспособительные и защитные реакции, направленные на ее выживание в условиях породного отвала. Исследуемые показатели можно использовать в биоиндикации и для оценки состояния древесных растений на техногенно нарушенных территориях.

Peculiarities of adaptive responses in Betula pendula Roth, growing in the waste dump of the Kedrovsky coal mine.pdf Введение Кемеровская область относится к регионам Российской Федерации, страдающим от высоких техногенных нагрузок на атмосферу, почву, поверхностные и подземные воды. Добыча полезных ископаемых сопровождается серьезными экологическими изменениями природных ландшафтов. Одной из главных задач улучшения экологической ситуации является создание экологически благоприятной среды. Главным «инструментом» восстановления нарушенных земель является растительность, с помощью которой происходит преобразование нарушенных экотопов в биологически продуктивные местообитания. Специфика отвалов состоит в том, что экологические условия на них существенно отличаются от естественных в сторону олиготроф-ности и ксероморфизма, поэтому число произрастающих на них видов растений ограничено. К доминирующим видам среди растительных сообществ на отвалах вскрышных пород угольной промышленности Кузбасса относится B. pendula благодаря ее малотребовательности к плодородию почвы и высокой семенной продуктивности [1]. Она является светолюбивой древесной породой, достаточно засухоустойчива. Важнейшим механизмом адаптации древесных растений в экстремальных экологических условиях является совокупность многих перестроек в растительном организме. Физиолого-биохимические исследования позволяют всесторонне анализировать состояние древесных растений и являются важным критерием оценки их устойчивости к неблагоприятным условиям среды [2, 3]. В литературе достаточно много сведений о физиолого-биохи-мических особенностях берез в условиях техногенного воздействия. Обнаружены определенные закономерности в оценке морфологических [4] и морфометрических показателей, в том числе флуктуирующей асимметрии [5-7]; показаны изменения содержания фотосинтетических пигментов у березы повислой в условиях техногенного загрязнения [8]; выполнены исследования водного обмена березы повислой разных экологических зон [9-12]. Рядом авторов показано, что скорость потери воды изолированными листьями растений коррелирует со степенью загрязнения воздуха и может служить показателем качества среды [13, 14]. Однако до сих пор остается открытым вопрос о возможных механизмах регуляции водного обмена на уровне целого растения. Большинство публикаций посвящено изучению адаптивных реакций у березы повислой в условиях техногенного загрязнения городской среды, однако единичны работы по структурно-функциональным показателям на малоплодородных субстратах, в том числе на отвалах [15], поэтому выявление соответствия условий произрастания древесных растений их биологическим требованиям на рекультивируемых территориях весьма актуально. Цель исследований - выявить особенности адаптивных реакций B. pendula, произрастающей в условиях породного отвала угольного разреза «Ке-дровский»: изучение показателей водного режима (содержание общей воды (оводненность), водоудерживающей способности, суточных потерь, водного дефицита; содержание аскорбиновой кислоты, фенольных соединений, про-лина и сахаров в листьях. Материалы и методики исследования Объектом исследований служила береза повислая (Betula pendula Roth), произрастающая в различных экологических условиях на территории породного отвала угольного разреза «Кедровский». Кедровский разрез расположен в 25 км севернее г. Кемерово (56°32'52'' с. ш., 86°05'54'' в. д.). Отвал имеет равнинно-наклонный рельеф с высотой 58 м, его площадь составляет 599,3 га, возраст - 30-35 лет. Породы отвала представлены песчаником (60%), алевролитами (20%), аргиллитами (15%), суглинками и глинами (5%). Преобладающей фракцией являются крупные агрегаты (от 3 до 10 и более мм), содержание мелких частиц снижено. Насаждение представлено посадками Pinus sylvestris, Populus tremula, единично встречались Salix viminalis, Populus balsamifera, Acer negundo, Hippophae rhamnoides. Возраст деревьев составлял 25-30 лет, II класса бонитета с полнотой 0,3-0,5. Живой напочвенный покров образован разнотравно-злаковым сообществом с общим проективным покрытием, равным 40-60%. Эксперимент проведен в 2013-2016 гг. на двух площадках наблюдений (ПН): № 1 (опыт) - спланированный породный отвал со сформированным фитоценозом естественного происхождения; № 2 (контроль) - участок, расположенный в 5 км от породного отвала со сходным по составу фитоценозом. Агрохимический анализ эмбриоземов проведен в аккредитованном испытательном центре агрохимической службы ФГУ ЦАС «Кемеровский». По агрохимическим показателям эмбриоземы всех ПН характеризовались высокой обеспеченностью обменным калием (100-240 мг/кг) и низкой обеспеченностью подвижным фосфором (10-50 мг/кг). На эмбриоземах ПН № 1, в сравнении с ПН № 2, выявлена низкая обеспеченность нитратным азотом (3,6-6,0 мг/кг). Анализ содержания подвижных форм тяжелых металлов (Pb, Cd, Cu, Zn, Mn, Ni, Co, Fe, Cr) не показал превышения существующих ПДК. Сбор материала проводили в вегетационный период (июнь-август). Для исследований образцы листьев собирали с десяти модельных деревьев удовлетворительного жизненного состояния (с десяти ветвей с нижней трети по периметру кроны) на каждом изучаемом участке. Отбирали листья березы с полностью развернувшейся листовой пластинкой, без видимых признаков повреждений в период с 9 до 10 ч с помощью секатора на шесте. Исследования водного режима проведены по общепринятой методике [16]. Водный дефицит определяли весовым методом, первое взвешивание -сразу после срезки. Срезанные листья после взвешивания ставили во влажную камеру черешками в воду и переносили в лабораторию. Второе взвешивание - через 2 часа. Оводненность листьев высчитывали как отношение разности сырой и абсолютно сухой массы пробы листьев к сырой массе данной пробы листьев в процентах. Листья взвешивали на лабораторных весах Ohaus Scout Pro 200 (США) с точностью до 0,05 г. Образцы листьев до абсолютно сухого состояния доводили в сушильном шкафу при температуре 105°С в закрытых бюксах в течении 4 ч. Суточные потери рассчитывали как разность массы листьев в начале эксперимента и массы пробы через сутки в процентах, водоудерживающую способность - как разность между оводнен-ностью и суточными потерями. Содержание аскорбиновой кислоты определяли титриметрическим методом с применением 2,6-дихлорфенолиндофенола натрия [17]. Определение фенольных соединений - по методу Левенталя-Нейбауера. Метод основан на легкой окисляемости фенолов калия перманганатом в присутствии инди-госульфокислоты при комнатной температуре, титрование проводят медленно до появления золотисто-желтого окрашивания [18]. Содержание свободного пролина определяли по методу Bates с соавт. [19] в модификации Воскресенской с соавт. [20] с использованием кислого нин-гидринового реактива. Для этого навеску листьев (100 мг) мелко нарезали, заливали 10 мл 3%-ного раствора сульфосалициловой кислоты и растирали в течение 5 мин в ступках до получения однородной массы, растертую массу переносили на фильтр. 2 мл фильтрата помещали в пробирку и добавляли 2 мл реагента (1,25 г нингидрина + 30 мл ледяной уксусной кислоты + 20 мл 6 М H3PO4). Затем в пробирки добавляли 2 мл ледяной уксуной кислоты. После тщательного перемешивания содержимого пробирки ставили на час в кипящую водяную баню. После этого охлаждали в ледяной бане, добавляли 4 мл толуола, взбалтывали 20-30 с и отстаивали. Интенсивность окраски определяли спектрофотометрически при длине волны 520 нм («LEKI SS 1207», Финляндия). Концентрацию свободного пролина рассчитывали с помощью калибровочной кривой. Определение сахаров проводили по методике Филипцовой и Смолича [21]. Взвешивали 5 г листьев, растирали их горячей дистиллированной водой (70°С) и оставляли на 10 мин для экстракции. Затем охлаждали, отфильтровывали через воронку Шотта и переносили в мерную колбу. Отбирали 1 мл осветленной отфильтрованной вытяжки, добавляли 15 мл глицерата меди, перемешивали и нагревали на водяной бане при 70°С в течение 6 мин. Определяли оптическую плотность раствора спектрофотометрически при длине волны 582 нм («LEKI SS 1207», Финляндия). Концентрацию сахаров рассчитывали с помощью калибровочной кривой, построенной по глюкозе. Повторность опытов трехкратная из смешанной пробы. Данные представлены в виде средних арифметических значений и их среднеквадратических (стандартных) ошибок, рассчитан коэффициент вариации (v, %). Статистическая обработка полученных данных и построение графиков выполнены с помощью стандартного пакета программ StatSoft STATISTICA 8.0 for Windows и Microsoft Office Excel 2007. Результаты исследований и обсуждение Количественное содержание влаги в ассимиляционном аппарате древесных растений, а также изменение этого показателя в течение вегетационного периода и в зависимости от условий произрастания, времени суток и других факторов позволяют объективно оценить состояние водного баланса растения в целом. Одной из важных характеристик стрессоустойчивости древесных растений являются их водоудерживающая способность и суточные потери. Изменение водоудерживающей способности связано с уровнем оводненности клеток и носит защитный характер против повреждающего действия неблагоприятных факторов внешней среды. Оводненность является наиболее стабильным показателем водного режима. Независимо от того, повышается или понижается температура, снижается содержание воды в почве или атмосфере, растение всегда снижает свои функции в результате обезвоживания. Чем выше водоудерживающая способность растения, тем оно устойчивее к неблагоприятным условиям среды [22]. По данным наших исследований, на спланированном отвале (ПН № 1) отмечались статистически значимое (p < 0,05) повышение водоудерживающей способности листьев и снижение суточных потерь по сравнению с контролем (рис. 1). Выявлено, что в июне в листьях березы повислой водоудерживающая способность максимально повышалась на 7,2%, в то же время отмечалось снижение суточных потерь воды - на 9,7% в сравнении с контролем. У растительных образцов, произрастающих на отвале, на уровне тенденции отмечены значения степени оводненности (ниже на 3,2-4,2%, чем в контрольной зоне). Стабильность данного показателя и повышение водоудерживающей способности на протяжении всего периода вегетации дают основание говорить о достаточно высокой адаптационной способности водообмена березы повислой в условиях отвала. Снижение содержания воды на 20-30% приводит к развитию водного дефицита в тканях растений, который служит показателем напряженности водного режима растений или недостаточного для полного насыщения клеток количества воды [23]. Нашим экспериментом установлено, что водный дефицит в листьях березы достаточно высокий (19,3-40,5%), особенно в июле. У образцов на ПН № 2 исследуемый показатель в 1,3-2 раза меньше, чем на ПН № 1. Это свидетельствует о том, что береза повислая в процессе транспирации листьев интенсивнее расходует влагу на первом участке, чем на втором. Биохимические механизмы защиты предотвращают обезвоживание клетки, обеспечивают детоксикацию продуктов распада, способствуют восстановлению нарушенных структур цитоплазмы. Высокую водоудерживаю-щую способность цитоплазмы в условиях недостатка влаги поддерживает накопление низкомолекулярных гидрофильных белков, связывающих в виде гидратных оболочек значительные количества воды. Этому помогают также взаимодействие белков с пролином, концентрация которого значительно возрастает в условиях водного стресса, а также увеличение в цитоплазме содержания сахаров [24-26]. Сахара и пролин как осмотически активные соединения активно участвуют в механизмах поддержания водного гомеостаза деревьев. Свободный пролин является стрессовым метаболитом, его содержание сильно возрастает при недостатке воды, что связывают с распадом белков. Накопление углеводов и аминокислоты пролина благоприятствует удержанию воды в клетке и обеспечивает высокую водоудерживающую способность цитоплазмы. Нашими исследованиями выявлено, что содержание сахаров в листьях деревьев варьировало в пределах от 1,73 до 2,32%, про-лина - 2,35-5,35 мг%. Максимальные значения сахаров отмечены в августе (2,32%), минимальные - в июле (1,73%). На спланированном отвале (ПН № 1) в листьях B. pendula содержание углеводов превысило контроль в среднем на 9%, аминокислоты - на 41% (рис. 2). 3- 70 -| 60 50 40 30 -20 -10 контроль опыт [Control] [Experiment] июнь [June] □ 1 контроль опыт [Control] [Experiment] июль [July] □ 2 пз контроль опыт [Control] [Experimen август [August] Рис. 1. Водный режим Betula pendula, произрастающей в условиях породного отвала (%), по параметрам: 1 - водный дефицит; 2 - водоудерживающая способность; 3 - суточные потери [Fig. 1. Water regime of Betula pendula, growing in the waste dump, (%) according to the following parameters: 1 - Water scarcity; 2 - Water-holding capacity; 3 - Daily loss] 60 50 -40 30 -20 -10 -0 - □ июнь □ июль □ август [June] [July] [August] Рис. 2. Динамика исследуемых биохимических показателей в листьях Betula pendula, (% от контроля) по параметрам: 1 - содержание пролина; 2 - содержание сахаров; 3 - содержание аскорбиновой кислоты; 4 - содержание фенольных соединений [Fig. 2. The dynamics of the studied biochemical parameters in the leaves of Betula pendula (% of control), according to the following parameters: 1 - Proline content; 2 - Sugar content; 3 - Ascorbic acid; 4 - Content of phenolic compounds] Г В экстремальных экологических условиях синтез аскорбиновой кислоты и фенольных соединений служит в качестве неспецифического ответа анти-оксидантной системы древесных растений. Многие исследователи отмечают увеличение фенольных соединений при неблагоприятных условиях, но снижение содержания аскорбиновой кислоты [27-29]. Наши исследования подтвердили данную закономерность. Так, в листьях B. pendula содержание фенольных соединений повышалось во все сроки наблюдений, в сравнении с контролем. Наибольшие отличия данного показателя отмечены в июле и превысили контроль на 14%. Анализ динамики содержания аскорбиновой кислоты в течение вегетации показал, что на всех площадках наблюдений отмечалось максимальное содержание данного показателя в июле (79,9897,76 мг/100 г), минимальное - в августе (19,16-22,18 мг/100 г). В июне у исследуемых образцов отмечено максимальное снижение (на 30%) аскорбиновой кислоты относительно контроля. На основе полученных экспериментальных данных рассчитан коэффициент вариации (рис. 3). Наименьшие значения по данному признаку выявлены у двух показателей - содержания фенольных соединений (17-19%) и водоудерживающей способности (11%). 70 59 57 55 45 36 29 23 21 19 17 11 11 □ контроль [Control] □ ОПЫТ [Experiment] Рис. 3. Коэффициент вариации у Betula pendula, произрастающей в условиях породного отвала (%), по параметрам: 1 - водный дефицит; 2 - водоудерживающая способность; 3 - суточные потери; 4 - содержание аскорбиновой кислоты; 5 - содержание фенольных соединений; 6 - содержание пролина; 7 - содержание сахаров [Fig. 3. The coefficient of variation in Betula pendula, growing in the waste dump, (%) according to the following parameters: 1 - Water scarcity; 2 - Water-holding capacity; 3 - Daily loss; 4 - Ascorbic acid; 5 - Content of phenolic compounds; 6 - Content of free proline; 7 - Sugar content] Размах варьирования других показателей и их коэффициент вариации оказались значительно выше, особенно по содержанию аскорбиновой кис- 57 52 60 50 40 30 20 -10 -0 -лоты (52-57%) и свободного пролина (55-57%). В связи с этим можно предположить, что условия экологической среды оказывают наиболее заметное воздействие, которое необходимо для приспособления B. pendula к специфике конкретного местообитания. Выводы Совокупный анализ характеристик водного режима и биохимических показателей у B. pendula свидетельствует о взаимной обусловленности этих параметров, что в целом обеспечивает ее успешное произрастание в условиях породного отвала Кедровского угольного разреза. Установлены некоторые особенности адаптивных реакций березы повислой, в том числе изменения водного режима листьев, в сторону повышения водоудерживающей способности (до 56,5%) и снижения суточных потерь (до 19,8%). У растительных образцов, произрастающих на отвале, степень оводненности ниже, чем в контроле, на 3,2-4,2%. На спланированном отвале в листьях B. pendula отмечено увеличение содержания пролина в среднем на 41%, сахаров - на 9% и фенольных соединений - на 14%, а также снижение содержания аскорбиновой кислоты на 30%. Наименьший размах варьирования у исследуемых растений выявлен по содержанию фенольных соединений и водоудерживающей способности, наибольший - по содержанию аскорбиновой кислоты и пролина. Выявленные перестройки в механизмах водного гомеостаза и функционировании антиоксидантной системы B. pendula позволяют рассматривать их как приспособительные и защитные реакции, направленные на ее выживание на породном отвале. Исследуемые показатели можно использовать в биоиндикации и для оценки состояния древесных растений на техногенно нарушенных территориях.

Ключевые слова

береза повислая, водный режим, биохимические показатели, эмбриоземы, Кемеровская область, birch, water regime, biochemical indicators, embryozems, Kemerovo region

Авторы

ФИООрганизацияДополнительноE-mail
Цандекова Оксана ЛеонидовнаФедеральный исследовательский центр угля и углехимии СО РАНканд. с-х. наук, н.с. лаборатории экологического биомониторингаzandekova@bk.ru
Колмогорова Елена ЮрьевнаФедеральный исследовательский центр угля и углехимии СО РАНканд. биол. наук, н.с. лаборатории экологического биомониторингаkolmogorova_elena@bk.ru
Всего: 2

Ссылки

Куприянов А.Н., Манаков Ю.А., Лазарев К.С. Натурализация древесных растений на отвалах горных пород Кузбасса // Вестник Красноярского государственного аграрного университета. 2011. № 9. С. 130-133.
Павлов И.Н. Древесные растения в условиях техногенного загрязнения. Улан-Удэ : БНЦ СО РАН, 2006. 359 с.
Маракаев О.А., Смирнова Н.С., Загоскина Н.В. Техногенный стресс и его влияние на лиственные древесные растения (на примере парков г. Ярославля) // Экология. 2006. № 6. С. 410-415.
Мигалина С.В., Иванова Л.А., Махнев А.К. Изменение морфологии листа Betula pendula Roth и B. pubescens Ehrh. вдоль зонально-климатической трансекты Урала и Западной Сибири // Экология. 2010. № 4. С. 257-265.
Kozlov M.V., Wilsey B.J., Koricheva J., Haukioja E. Fluctuation asymmetry of birch leaves increases under pollution impact // Journal of Applied Ecology. 1996. Vol. 33, № 6. PP. 1489-1495. doi: 10.2307/240478
Иванов В.П., Иванов Ю.В., Марченко С.И., Кузнецов Вл.В. Использование индексов флуктуирующей асимметрии листа березы повислой для диагностики состояния фитоценозов в условиях техногенного загрязнения // Физиология растений. 2015. Т. 62, № 3. С. 368-377.
Hagen S.B., Ims R.A., Yoccoz N.G., Sorlibraten O. Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens) // Plant Ecology. 2008. Vol. 195, № 2. PP. 157-163. doi:10.1007/s11258-007-9312-y
Цандекова О.Л., Неверова О.А. Влияние выбросов автотранспорта на пигментный комплекс листьев древесных растений // Известия Самарского научного центра РАН. 2010. Т. 12, № 1-3. С. 853-856.
Scoffoni C., Vuong C., Diep S., Cochard H., Sack L. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance // Plant Physiology. 2014. Vol. 164. РЕ 1772-1788.
Сазонова Т.А., Позднякова С.В., Придача В.Б. Особенности водного режима Betula pendula (Betulaceae) с нормальной и аномальной древесиной ствола в онтогенезе // Ботанический журнал. 2012. № 11. С. 1435-1447.
Гиниятуллин Р.Х., Кулагин А.Ю. Водный дефицит древесных растений в различных экологических условиях // Известия Саратовского университета. Новая серия. Сер. Химия, биология, экология. 2015. Т. 15, № 3. С. 57-64.
Амосова И.Б., Феклистов П.А. Распределение влаги по сечению ствола в древесине березы повислой // Лесной вестник. 2010. № 3 (72). С. 97-100.
Беляева Ю.В. Результаты исследования водоудерживающей способности листовых пластинок Betula pendula Roth., произрастающей в условиях антропогенного воздействия (на примере г. Тольятти) // Известия Самарского научного центра РАН. 2014. Т. 16, № 5 (5). С. 1654-1659.
Сунцова Л.Н., Иншаков Е.М., Козик Е.В. Оценка состояния городской среды методом фитоиндикации (на примере г. Красноярска) // Лесной журнал. 2011. № 4. С. 29-32.
Чукина Н.В., Филимонова Е.И., Файрузова А.И., Борисова Г.Г. Морфофизиологические особенности листьев Betula pendula Roth на золоотвалах Cреднего Урала // Ученые записки Петрозаводского государственного университета. Биологические науки. 2016. № 6 (159). С. 68-75.
Малый практикум по физиологии растений / под ред. А.Т. Мокроносова. М. : МГУ, 1994. 184 с.
Неверова О.А. Практикум по биохимии. Кемерово : КемТИПП, 2005. 69 с.
Коренская И.М., Ивановская Н.П., Измалкова И.Е. Лекарственные растения и лекарственное растительное сырье, содержащие антраценпроизводные, простые фенолы, лигнаны, дубильные вещества. Воронеж : Изд-во Воронеж. гос. ун-та, 2007. С. 50-51.
Bates L.E., Waldren R.P., Teare I.D. Rapid determination of free proline for water stress studies // Plant Soil. 1973. Vol. 39. PP. 205-207.
Воскресенская О.Л., Алябышева Е.А., Половникова М.Г. Большой практикум по биоэкологии : учеб. пособие. Йошкар-Ола : Изд-во Марийск. гос. ун-та, 2006. С. 6667.
Филипцова Г.Г., Смолич И.И. Биохимия растений : метод. рекомендации. Минск : БГУ, 2004. С. 6-7.
Чудинова Л.А., Орлова Н.В. Физиология устойчивости растений. Пермь : Перм. гос. ун-т, 2006. 124 с.
Яковец О.Г. Фитофизиология стресса. Минск : БГУ, 2009. 101 с.
Baena G.E., Rolland F., Thevelein J.M., Sheen J. A central integrator of transcription network in plant stress and energy signaling // Nature. 2007. Vol. 448. PP. 938-942.
Milyutina I.L., Sudachkova N.E., Romanova L.I. Response of the antioxidant system of light-demanding and shade-bearing pine species to phytocenotic stress // Contemporary Problems of Ecology. 2013. Vol. 6, № 2. PP. 149-155. doi: 10.1134/S199542551302011X
Verbruggen N., Hermans C. Proline accumulation in plants : a review // Amino Acids. 2008. № 35. PP. 753-759. doi: 10.1007/s00726-008-0061-6
Колмогорова Е.Ю., Неверова О.А. Влияние некоторых компонентов антиоксидантной системы на устойчивость древесных растений, произрастающих в условиях породного отвала угольного разреза // Вестник Алтайского государственного аграрного университета. 2015. № 9 (131). С. 61-65.
Гарифзянов А.Р., Иванищев В.В., Музафаров Е.Н. Оценка устойчивости Betula pendula Roth при произрастании на техногенно загрязненных территориях // Известия Тульского государственного университета. Естественные науки. 2011. № 2. С. 315-324.
Баландайкин М.Э. Коррелирование содержания аскорбиновой кислоты в ассимиляционном аппарате Betula pendula Roth. с действием патологического агента // Химия растительного сырья. 2014. № 1. С. 153-157.
 Особенности адаптивных реакций <i>Betula pendula </i>Roth, произрастающей в условиях породного отвала Кедровского угольного разреза | Вестн. Том. гос. ун-та. Биология. 2017. №  38. DOI: 10.17223/19988591/38/11

Особенности адаптивных реакций Betula pendula Roth, произрастающей в условиях породного отвала Кедровского угольного разреза | Вестн. Том. гос. ун-та. Биология. 2017. № 38. DOI: 10.17223/19988591/38/11

Полнотекстовая версия