Influence of nitinol bulk structure and its surface layer composition on the regularities of oxidation during heating in air | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2016. № 4(6). DOI: 10.17223/24135542/6/1

Influence of nitinol bulk structure and its surface layer composition on the regularities of oxidation during heating in air

The use of alloys based on nitinol TiNi in mechanical engineering, medicine, and elsewhere is caused by characteristics of the alloys such as shape memory, fatigue life, high corrosion resistance, and biochemical stability. Nanostructuring TiNi using severe plastic deformation increases the ultimate strength and yield strength while preserving the ductility of the material. But the influence of the fine-grained structure of plastically deformed TiNi on the parameters of oxidation has not been studied. The influence of protective heat-resistant coatings on the resistance of the alloy surface to oxidation is not systematically investigated. In this regard, the aim of the work is to study the influence of submicrocrystalline structure and the presence of protective silicon-containing surface layer on features of TiNi oxidation when heated in air. Nitinol Ti49.2Ni50.8 and an alloy Ti50.0Ni47.3Fe2.? were used to obtain the submicrocrystalline by means of equal-channel angular pressing. Two samples of the alloy with submicrocrystalline structure with average grain size dave=0.6 and 0.25 лm were obtained. Formation of protective surface layers on TiNi was performed by surface modification with silicon using ion-beam and plasma immersion processing. TiNi samples with Si-coating up to 300 nm thick and without the continuous coating were produced. The oxidation process of the samples at heating in air was studied by differential thermal analysis. The composition and structure of starting materials and oxidation products were investigated using a complex of physical and physico-chemical methods. It was shown that the submicrocrystalline structure of TiNi-Fe (dave= 0.25 /m) improved the stability of the alloy to oxidation at t > 600 C as compared to the coarse-grained alloy structure, which was revealed by the lessening of the increase in values of the samples due to oxidation and increase in activation energy of the process. Slowing of the process of fine-grained alloy oxidation was explained by formation of a dense crystalline surface oxide layer that enhanced the diffusion limitations of the process. A thin silicon-containing layer on the TiNi surface with maximum concentration of Si 50 at.% in the surface layer at 5-40 nm depth significantly improved the heat resistance of the alloy in the temperature region t < 500 °C. Formation of silicon coatings up to 300 nm thick reduced the resistance of the alloy surface layers to oxidation at high temperatures due to exfoliation and cracking of the Si-coating and formation of heterogeneous morphology and composition of the surface layers.

Download file
Counter downloads: 212

Keywords

никелид титана, крупнозернистая и субмикрокристаллическая структура, модифицирование кремнием, окисление, никелид титана, крупнозернистая и субмикрокристаллическая структура, модифицирование кремнием, окисление, nitinol, coarse-grained and submicrocrystalline structure, modifying the silicon, oxidation

Authors

NameOrganizationE-mail
Abramova Polina V.Tomsk Polytechnic Universitybozhkopv@tpu.ru
Korshunov Andrej V.Tomsk Polytechnic Universitykorshunov@tpu.ru
Lotkov Aleksandr I.Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Scienceslotkov@ispms.tsc.ru
Kashin Oleg A.Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciencesokashin@ispms.tsc.ru
Всего: 4

References

Мейснер Л. Л. Механические и физико-химические свойства сплавов на основе никелида титана с тонкими поверхностными слоями, модифицированными потоками заряженных частиц // Физическая мезомеханика. Спец. выпуск. 2004. № 7. Ч. 2. С. 169-172.
Pushin V.G., Kourov N.I., Kuntsevich T.E. Specific features of martensitic transfor mations, microstructure, and mechanical properties of nanostructured shape memory Ti-Ni-TiFe alloys // Bulletin of the Russian Academy of Sciences: Physics. 2009. Vol. 73. P. 1027-1029.
Dudarev E.F., Valiev R.Z., Kolobov Yu.R., Lotkov A.I., Pushin V.G., Bakach G.P., Gunderov D.V., Dyupin A.P., Kuranova N.N. On the Nature of Anomalously High Plasticity of High-Strength Titanium Nickelide Alloys with Shape-Memory Effects: II. Mechanisms of Plastic Deformation upon Isothermal Loading // Phys. Met. & Metallography. 2009. Vol. 107. P. 298-311.
Тихонов А.С., Герасимов А.П., Прохорова И.И. Применение эффекта памяти формы в современном машиностроении. М. : Машиностроение, 1981. 80 с.
Ооцука К., Симидзу К., Судзуки Ю. и др. Сплавы с эффектом памяти формы. М. : Металлургия, 1990. 224 с.
Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материа лы. М. : ИКЦ Академкнига, 2007. 398 с.
Xu C.H., Ma X.Q., Shi S.Q., Woo C.H. Oxidation behavior of TiNi shape memory alloy at 450-750°C // Materials Science and Engineering. 2004. A 371. P. 45-50.
Chu C.L., Wu S.K., Yen Y.C. Oxidation behavior of equiatomic TiNi alloy in high temper ature air environment // Materials Science and Engineering. 1996. A Vol. 216 (1-2). P. 193-200.
Smialek J.L., Garg A., Rogers R.B., Ronald D. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys. NASA/TM. 2011. Р. 217096.
Беляев С.П., Гильмутдинов О.М., Канунникова О.М. Исследование процессов окисления и сегрегации на поверхности никелида титана // Письма в ЖТФ. 1999. Т. 25, вып. 3. С. 89-94.
Chan C.-M., Trigwell S., Duerig T. Oxidation of an NiTi Alloy // Surface and interface analysis. 1990. Vol. 5. P. 349-354.
Hassel A.W. Surface treatment of NiTi for medical applications // Min Invas Ther and Allied Technol. 2004. Vol. 13, is. 4. P. 240-247.
Zhu L., Fino J.M., Pelton A.R. Oxidation of nitinol // Proceedings of the international conference on shape memory and superelastic technologies. 2003. P. 357-366.
Ко J.H., Lee D.B. High Temperature Oxidation Behavior of TiNi Alloys // Materials Science Forum. 2005. Vol. 475-479. P. 853-856.
Vichev R.G., Yong Liu, J. Van Humbeeck, Blanpain B., Celis J.P. Thermally grown oxide films on NiTi shape memory alloys // Proc. ECASIA 97. 7th European Conference on Applications of Surface and Interface Analysis. 16-20 June 1997. Congress Centre, Gote-borg, Sweden / ed I. Olefjord, L. Nyborg, D. Briggs. 1997. P. 679-682.
Firstov G.S., Vitchev R.G., Kumar H., Blanpain B., Humbeeck J Van. Surface oxidation of NiTi shape memory alloy // Biomaterials. 2002. Vol. 23. P. 4863-4871.
Борисов Д.П., Детистов К.Н., Коротаев А.Д., Кузнецов В.М., Мошков В.Ю., Пин-жин Ю.П., Тюменцев А.Н. Вакуумно-плазменный технологический комплекс «СПРУТ» для создания новых нанокомпозитных материалов и упрочняющих поверхностных структур изделий // Заводская лаборатория. Диагностика материалов. 2010. Т. 76, № 12. С. 32-36.
Абрамова П.В., Коршунов А.В., Лотков А.И., Мейснер Л.Л., Мейснер С.Н., Батурин А.А., Копылов В.И., Семин В.О. Влияние структуры никелида титана на особенности процесса окисления при нагревании и на коррозионную стойкость в хло-ридсодержащих растворах // Известия Томского политехнического университета. 2013. Т. 323, № 3. С. 88-95.
Коршунов А.В., Лотков А.И., Кашин О.А., Абрамова П.В., Борисов Д.П. Влияние модифицирования поверхностных слоев никелида титана кремнием в условиях плазменно-иммерсионной обработки на его коррозионную стойкость в хлоридсо-держащих средах // Известия Томского политехнического университета. Инжиниринг георесурсов. 2015. Т. 326, № 9. С. 114-123.
 Influence of nitinol bulk structure and its surface layer composition on the regularities of oxidation during heating in air | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2016. № 4(6). DOI: 10.17223/24135542/6/1

Influence of nitinol bulk structure and its surface layer composition on the regularities of oxidation during heating in air | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2016. № 4(6). DOI: 10.17223/24135542/6/1

Download full-text version
Counter downloads: 657