Study of functional groups on the surface of the oxidized carbon material Sibunit by acid-base titration and XPS
The literature on the application of acid-base titration and XPS methods to determine the chemical state of the surface of carbon materials was reviewed and the possibilities, advantages, and disadvantages of these methods discussed. Simultaneous use of these methods and comparison of the results was justified to obtain the most reliable information on the qualitative and quantitative composition of the surface functional groups of carbon materials. An experimental comparative study was conducted of the qualitative and quantitative composition of the surface groups of eight samples oxidized with various oxidants (dry and wet air, hydrogen peroxide, sodium hypochlorite, and nitric acid) and under different conditions of the graphite-like carbon of the Sibunit series. The application of all the oxidants except of dry air produced a significant number of oxygen-containing groups on the surface of the carbon. The results obtained by the XPS method and the results obtained by the titration method partially corresponded. The series of changes in the concentration of surface groups nearly coincided, but the relative concentrations of the detectable oxygen differed markedly. A correlation was found between the 531.3 eV line of the O1s spectrum and the content of carbonyl groups on the carbon surface. There were no correlations with lines in the spectra for the content of alcohol, carboxyl, and ester groups. Thus, to obtain the most accurate information about the chemical nature of the surface of a carbon material, it will be necessary to use a wider set of physicochemical methods.
Keywords
titration,
XPS,
activation,
oxidation,
carbon,
титрование,
активация,
РФЭС,
окисление,
углеродAuthors
| Polyanskaya Elena M. | Boreskov Institute of Catalysis, SB RAS | pem11@yandex.ru |
| Taran Oxana P. | Boreskov Institute of Catalysis, SB RAS; Novosibirsk State Technical University | oxanap@catalysis.ru |
Всего: 2
References
Taran O.P., Polyanskaya E.M., Ogorodnikova O.L., Descorme C., Besson M., Parmon V. Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized Sibunit samples // Catal. Ind. 2010. V. 2, № 4. P. 381-386.
Haydar S., Moreno-Catilla C., Ferro-Garcia M.A., Carrasco-Marin F. et al. Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons // Carbon. 2000. V. 38, № 9. P. 1297-1308.
Pels J.R., Kapteijn F., Moulijn J.A., Zhu Q. et al. Evolution of nitrogen functionalities in carboneous materials during pyrolysis // Carbon. 1995. V. 33, № 11. Р. 1641-1653.
Kuzin I.A., Strashko B.K. Production and investigation of ion-exchange properties of oxidized carbons // Rus. J. Appl. Chem. 1966. V. 39. P. 603-608.
Gallezot P., Chaumet S., Perrard A., Isnard P. Catalytic wet air oxidation of acetic acid on carbon-supported ruthenium catalysts // J. Catal. 1997. V. 168, № 1. P. 104-109.
Lemus-Yegres L.J., Such-Basanez I., Roman-Martinez M.C., Salinas-Martinez de Lecea C. Catalytic properties of a Phdiamine complex anchored on activated carbon: effect of different surface oxygen groups // Appl. Catal., A. 2007. V. 331. P. 26-33.
Darmstadt H., Roy Ch., Kakiaguine S. ESCA characterization of commercial carbon blacks and of carbon blacks from vacuum pyrolysis of used tires // Carbon. 1994. V. 32, № 8. P. 1399-1406.
Xu T., Yang Sh., Lu J., Xue Q. et al. Characterization of nanocrystalline diamond films implanted with nitrogen ions // Diamond Relat. Mater. 2001. V. 10, № 8. P. 1441-1447.
Gardner S.D., Singamsetty Ch.S.K., Booth G.L., He G.-R., Pittman Ch.U. Surface characterization of carbon fibers using angle-resolved XPS and ISS // Carbon. 1995. V. 33. P. 587-595.
Rosenthal D., Ruta M., Schlogl R., Kiwi-Minsker L. Combines XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers // Carbon. 2010. V. 48, № 6. P. 1835-1843.
Wildgoose G.G., Lawrence N.S., Leventis H.C., Jiang L. et al. X-ray photoelectron spectroscopy studies of graphite powder and multiwalled carbon nanotubes covalently modified with Fast Black K: evidence for a chemical release mechanism via electrochemical reduction // J. Mater. Chem. 2005. V. 15, № 9. Р. 953-959.
Desimoni E., Casella G.L., Morone A., Salvi A.M. XPS determination of oxygen-containing functional groups on carbon-fiber surfaces and the cleaning of these surfaces // Surf. Interface Anal. 1990. V. 15, № 10. P. 627-634.
Georgiou P., Walton J., Simtzis J. Surface modification of pyrolyzed carbon fibers by cyclic voltammetry and their characterization with XPS and dye adsorption // Electochimica Acta. 2010. V. 55. P. 1207-1216.
Zhou J.-H., Dui Z.-J., Zhu J., Li P., Chen D., Dai Y.-C., Yuan W.-K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FTIR // Carbon. 2007. V. 45. P. 785-796.
Keleme S.R., Freund H. XPS characterisation of Glassy-carbon surface oxidized by O2, CO2 and HNO3 // Energy Fuels. 1988. V. 2. P. 111-118.
Rey A., Faraldos M., Bahamonde A., Casas J.A. et al. Role of the activated carbon surface on catalytic wet peroxide oxidation // Ind. Eng. Chem. Res. 2008. V. 47. P. 8166-8174.
Santiago M., Stuber F., Fortuny A., Fabregat A. et al. Modified activated carbons for catalytic wet air oxidation of phenol // Carbon. 2005. V. 43, № 10. P. 2134-2145.
Tarkovskaya I.A. Oxidized carbon. Kiev : Naukova Dumka, 1981.
Okhlopkova L.B., Lisitsyn A.S., Likholobov V.A., Gurrant M., Boehm H.P. Properties of Pt/C and Pd/C catalysts prepared by reduction with hydrogen of adsorbed metal chlorides. Influence of pore structure of the support // Appl. Catal., A. 2000. V. 204, № 2. P. 229-240.
Boehm H.P. Chemical identification of surface groups // Advances in Catalysis / ed. by E.E. Eley, H. Pines, P.B. Weisz. New York, London : Academic Press, 1966. V. 16. P. 179-274.
Shfeeyan M.S., Daud W.M.A.W., Houshmand A., Shamiri A. A review on surface modification of activated carbon for carbon dioxide adsortption // J. Analyt. Appl. Pyrolysis. 2010. V. 89. P. 143-151.
Lopez-Ramon M.V., Stoeckli F., Moreno-Castilla C., Carrasco-Marin F. On the characterization of acid and basic sites on carbons by various techniques // Carbon. 1999. V. 37, № 8. P. 1215-1221.
Preocanin T., Kallay N. Application of «Mass-titration» to determination of surface charge of metal oxides // Croatica Chemica Acta. 1998. V. 71, № 4. P. 1117-1125.
Zazo J.A., Fraile A.F., Rey A., Bahamonde A. et al. Optimizing temperature of Fe/activated carbon catalysts for CWPO // Catal. Today. 2009. V. 143, № 3-4. P. 341-346.
Qui N.V., Scholz P., Krech T., Keller T.F. et al. Multiwalled carbon nanotubes oxidized by UV/H2O2 as catalyst for oxidative dehydrogenation of ethylbenzene // Catal. Commun. 2011. V. 12, № 6. P. 464-469.
Moreno-Castilla C., Ferro-Garcia M.A., Joly J.P., Bautista-Toledo I. et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments // Langmuir. 1995. V. 11, № 11. P. 4386-4392.
Bleda-Martmez M.J., Lozano-Castello D., Morallon E., Cazorla-Amoros D. et al. Chemical and electrochemical characterization of porous carbon materials // Carbon. 2006. V. 4, № 13. P. 2642-2651.
Fortuny A., Font J., Fabregat A. Wet air oxidation of phenol using active carbon as catalysts // Appl. Catal., B. 1998. V. 19, № 3-4. P. 165-173.
Aguilar C., Garda R., Soto-Garrido G., Arriagada R. Catalytic wet air oxidation of aqueous ammonia with activated carbon // Appl. Catal., B. 2003. V. 46, № 2. P. 229-237.
Pradhan B.K., Sandel N.K. Effect of different oxidizing agent treatments on the surface properties of activated carbons // Carbon. 1999. V. 37, № 9. P. 1323-1332.
Wan Mohd Ashri Wan Daud, Houshamnd A.H. Textural characteristics, surface chemistry and oxidation of activated carbon // J. Nat. Gas Chem. 2010. V. 19, № 3. P. 267-279.
Kinoshita K. Carbon. Electrochemical and physicochemical properties. New York : Wiley- Interscience, 1988. 533 p.
Santos V.P., Pereira M.F.R., Faria P.C.C., Orfao J.J.M. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons // J. Hazard. Mater. 2009. V. 162, № 2-3. P. 736-742.
Oliveira L.C.A., Silva C.N., Yoshida M.I., Lago R.M. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition // Carbon. 2004. V. 42, № 11. Р. 2279-2284.
Abiman P., Crossley A., Wildgoose G.G., Jones J.H. et al. Investigating the thermodynamic cause behind the anomalously large shifts in pKa values of benzoic acid-modified graphite and glass carbon surfaces // Langmuir. 2007. V. 23. P. 7847-7852.
Boehm H.P. Some aspects of the surface chemistry of carbon blacks and other carbons // Carbon. 1994. V. 32, № 5. P. 759-769.
Figueiredo J.F., Pereira M.F.R., Freitas M.M.A., Orfao J.J.M. Modification of the surface chemistry of activated carbons // Carbon. 1999. V. 37, № 9. P. 1379-1389.
Таран О.П., Яшник С.А., Тарабанько В.Е., Кузнецов Б.Н., Пармон В.Н. Гетерогенно каталитическое окисление воды и органических веществ в водной среде / под ред. O. П. Таран, В.Н. Пармона. Новосибирск : Изд-во СО РАН, 2017. 385 с.