Optimizing analysis of samples with complicated composition by inductively coupled plasma mass spectrometry | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2017. № 10. DOI: 10.17223/24135542/10/3

Optimizing analysis of samples with complicated composition by inductively coupled plasma mass spectrometry

Mass spectrometry is one of the most current and evolving methods in analytical chemistry. One of the main problems of this method is spectral interference, which leads to a sharp increase in the detection limits for some elements and decrease of analysis accuracy. The most significant cause of spectral interference is molecular (polyatomic) ions, which are associations of argon ions and their impurities, as well as interactions of the solvent components and matrix with each other, which can show a mass that coincides with the mass of the isotope being identified. The possibility of formation of a large number ofpolymolecules and the necessity of accounting for it in analysis are presented in this work, using thermodynamic modeling. As model samples for the experiment, standard samples of black shale were used that were created by the Irkutsk Institute of Geochemistry named after A.P. Vinogradov, and modeling was carried out using the program HSC Chemistry. Thermodynamic calculations were carried out on Al and Ba, for example, because these elements can influence identifying rare and rare-earth elements. Temperatures in the calculations varied from 6000 K to 9000 K in increments of500 K. One of the methods to account for and eliminate spectral interference is deriving individual equations for mathematical correction. These equations involve introducing two types of coefficients, theoretically and practically based. The first type of coefficients is derived during the transition from one isotope to another by the ratio of their natural prevalence. The second type can be obtained by analyzing pure solutions of the elements studied. On the basis of mathematical calculations that account for the prevalence of isotopes and coefficients that were obtained from the experimental results for each isotope, the individual equations for mathematical correction of interference were derived. The general form of the equations can be presented as: Men=Men measured - akArMem - bkoMf - vkarMeP - dkwMes - ekNMet where Mem, Mel, Mep, Mes, Met are isotopes of interference elements; kAr, ko, kCl, kN, kH are coefficients that account for contribution of ions with argon, oxygen, chlorine, nitrogen, and hydrogen respectively, and a, b, c, d, e are coefficients that account for the natural prevalence of isotopes. In conclusion, 32 equations were derived for the following isotopes: Sc45, Rb85, Sr88, Y89, Zr90, Nb93, Cs133, Ba137, La139, Ce140, Pr141, Nd145, Sm147,149, Eu 151, Gd158,160, Tb159, Dy161,163, Ho165, Er166, 167, Tm169, Yb171,172, Lu175, Hf178, Ta181, Pb208, Th232, and U238.

Download file
Counter downloads: 179

Keywords

спектральные помехи, метод масс-спектрометрии с индуктивно-связанной плазмой, термодинамическое моделирование, mass spectrometry, inductively coupled plasma, spectral interference, thermodynamic modeling

Authors

NameOrganizationE-mail
Otmakhov Vladimir I.Tomsk State Universityotmahov2004@mail.ru
Rabtsevich Evgeniya S.Tomsk State Universityevgenia882-a@mail.ru
Babenkov Denis E.Tomsk State Universitydenis_babenkov@list.ru
Всего: 3

References

Отмахов В.И., Варламова Н.В., Петрова Е.В. Структурно-методологическая схема создания методик анализа оксидных материалов с применением метода атомноэмиссионной спектроскопии // Заводская лаборатория. Диагностика материалов. 2008. Т. 74, № 8. С. 15-17.
Аношкина Ю.В., Асочакова Е.М., Бухарова В.И., Отмахов В.И., Тишин П.А. Опти мизация условий пробоподготовки углеродистых геологических пород для последующего анализа методом масс-спектрометрии с индуктивно-связанной плазмой // Аналитика и контроль. 2013. Т. 17, № 1. С. 47-58.
Петров Л.Л. Стандартные образцы химического состава природных минеральных веществ : каталог. Иркутск, 2006. 54 с.
Outokumpu HSC Chemistry® for Windows // Сhemical Reaction and Equilibrium Soft ware with Extensive Thermochemical Database. Version 5.1.
Пупышев А.А., Данилова Д.А. Термодинамическое моделирование для атомно эмиссионной спектроскопии с индуктивно связанной плазмой. Екатеринбург : УГТУ-УПИ, 2005. 76 с.
Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе массспектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5, № 4. С. 335-369.
Карандашев В.К., Туранов А.Н., Орлова Т.А. Использование метода массспектрометрии с индуктивно-связанной плазмой в элементном анализе объектов окружающей среды // Заводская лаборатория. Диагностика материалов. 2007. Т. 73, № 1. С. 12-22.
Пупышев А.А., Суриков В.Т. Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург : УрО РАН, 2006.
 Optimizing analysis of samples with complicated composition by inductively coupled plasma mass spectrometry | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2017. № 10. DOI: 10.17223/24135542/10/3

Optimizing analysis of samples with complicated composition by inductively coupled plasma mass spectrometry | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2017. № 10. DOI: 10.17223/24135542/10/3

Download full-text version
Counter downloads: 553