Influence of the conditions of pretreatment of Mn-containing catalyst on its redox properties | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2017. № 10. DOI: 10.17223/24135542/10/4

Influence of the conditions of pretreatment of Mn-containing catalyst on its redox properties

Among the oxides of transition metals, manganese oxides are the most promising for developing effective catalysts for the deep oxidation of hydrocarbons and carbon monoxide. This is due to the high potential of the oxidizing ability of manganese oxides with oxidation states of +4 and +3, the propensity MnOx to thermal activation due to the formation of defective spinel Mn3O4, and a synergistic effect in oxidative activity when MnOx is added to noble metals and some oxides of transition metals (Cu, Fe, and etc.). Often, the redox and catalytic properties of the supported catalysts depend on the preparation mode and the conditions of heat treatment that control both the composition and the defectiveness of the structure of the catalytically active metal and its interaction with the support. For the preparation of modern MnOx-containing catalysts, a nontraditional method of synthesis such as solution combustion synthesis, proposed by for the first time Kingsley and Patil [citation], is ofpractical interest. The principle of supporting and anchoring the active component consists of mixing saturated solutions of salts of catalytically active metals and organic fuel with reducing properties (for example, urea), depositing them on the supports, and initiating a self-propagating burning reaction. In this paper, the regularities in the formation of redox properties of MnOx-containing catalysts during thermal treatment in inert and oxidizing media at 200 and 450 °C were studied. The catalyst was prepared by co-impregnation with glycine on a ceramic honeycomb support with a low specific surface. The treatment temperatures were chosen taking into account the temperature range in which the catalytic activity of MnOx-based systems is manifested in hydrocarbon oxidation reactions. Analysis of the TPR-H2 data showed that during pretreatment in argon at 450 °C, the reactive oxygen species that can be active in the butane oxidation was removed from the surface sample and the active component was characterized by the Mn3O4 phase. Pretreatment in oxygen (100 vol. %) promoted the formation of the most oxidized states of manganese, which is unlikely for the conditions of catalyst preparation by the method of solution combustion synthesis. Based on the results of TPR-H2, it was concluded that the most correct pretreatment conditions for characterizing the freshly prepared MnOx-containing catalyst is pretreatment in argon at 200 °C. However, under oxidizing conditions of catalytic tests of the MnOx-containing catalyst, oxidation of the MnOx phases existing in the initial catalyst could occur, and these phases make a significant contribution to the activity of the catalyst in hydrocarbon oxidation reactions. These phases of MnO2/Mn2O3 were identified in the catalyst after its preliminary treatment under oxidizing conditions with an oxygen content of 10 vol. %.

Download file
Counter downloads: 180

Keywords

марганецсодержащий катализатор, катализаторы глубокого окисления, оксид марганца, MnOx, ТПВ-Н2

Authors

NameOrganizationE-mail
Yashnik Svetlana A.Boreskov Institute of Catalysis, SB RASyashnik@catalysis.ru
Gavrilova Anna A.Boreskov Institute of Catalysis, SB RASgavraa@catalysis.ru
Surovstova Tatyana A.Boreskov Institute of Catalysis, SB RASsurtav@mail.ru
Shikina Nadezhda V.Boreskov Institute of Catalysis, SB RASshikina@catalysis.ru
Всего: 4

References

Завьялова У.Ф., Барбашова П.С., Лермонтов А.С., Шитова Н.Б., Третьяков В.Ф., Бурдейная Т.Н., Лунин В.В., Дроздов В.А., Яшник С.А., Исмагилов З.Р., Цырульников П.Г. Самораспространяющийся синтез блочных катализаторов нейтрализации выхлопных газов Pd-CeO2/AkO3 // Кинетика и катализ. 2007. T. 48 (1). C. 171-176.
Mukasyan A.S., Dinka P. Novel approaches to Solution-Combustion Synthesis of Nanomaterials // Intern. J. Self-Propagating High-Temperature Synthesis. 2007. V. 16, № 1. P. 23-35.
Ghose R., Hwang H.T., Varma A. Oxidative coupling of methane using catalysts synthe sized by solution combustion method: Catalyst optimization and kinetic studies // Appl. Catal., A: Gen. 2014. V. 472. P. 39-46.
Reddy L.H., Reddy G.K., Devaiah D., Reddy B.M. A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation // Appl. Catal., A: Gen. 2012. V. 28. P. 297-305.
Groven L.J., Pfeil T.L., Pourpoint T.L. Solution combustion synthesized cobalt oxide catalyst precursor for NaBH4 hydrolysis // Intern. J. Hydrogen Energy. 2013. V. 38, № 15. P. 6377-6380.
Gonzalez-Cortes S.L., Imbert F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS) // Appl. Catal., A: Gen. 2013. V. 452. P. 117-131.
Gonzalez-Cortes S.L., Xiao T.-C., Green M.L.H. Urea-matrix combustion method: a versatile tool for the preparation of HDS catalysts // Stud. Sur. Sci. Catal. 2006. V. 162. P. 817-824.
Patil K.C., Hedge M.S., Rattan R., Aruna S.T. Nanocrystalline Oxide Materials. Combustion Synthesis, Properties and Applications. London : World Scientific, 2008.
Kingsley J.J., Patil K.C. A Novel Combustion Process for the Synthesis of Fine Particle a-Alumina and Related Oxide Materials // Mater. Lett. 1988. V. 6. P. 427-432.
Yashnik S.A., Chesalov Yu.A., Ishchenko A.V., Kaichev V.V., Ismagilov Z.R. Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane // Appl. Catal., B. 2017. V. 204. P. 89-106.
Яшник С.А., Суровцова Т.А., Ищенко А.В., Каичев В.В., Исмагилов З.Р. Структура и свойства Pt-модифицированных Pd-Mn-гексаалюминашых катализаторов высокотемпературного окисления метана // Кинетика и катализа. 2016. Т. 57, №4. С. 535-547.
Yashnik S.A., Ismagilov Z.R., Denisov S.P., Danchenko N.M. Synergetic effect of Pd addition on catalytic behavior of monolithic platinum-manganese-alumina catalysts for diesel vehicle emission control // Appl. Catal., B. 2016. V. 185. P. 322-336.
Yashnik S.A., Ismagilov Z.R. Dependence of Synergetic Effect of Palladium-Manganese- Hexaaluminate Combustion Catalyst on Nature of Palladium Precursor // Top. Catal. 2012. V. 55, № 11-13. P. 818-836
Augustin M., Fenske D., Bardenhagen I., Westphal A., Knipper M., Plaggenborg T., Kolny-Olesiak J., Parisi J. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence // Bailstein J. Nanotechnol. 2015. № 6. P. 47-59.
Pozan G.S. Effect of support on the catalytic activity of manganese oxide catalyts for tolu ene combustion // J. Hazard. Mater. 2012. V. 221-222. P. 124-130.
Wu Z., Tang N., Xiao L., Liu Y., Wang H. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation // J. Colloid. Interface Sci. 2010. V. 352. P. 143-148.
Yashnik S.A., Ushakov V.V., Leonov N.L., Ismagilov Z.R. High-performance Mn-Al-O catalyst on reticulated foam materials for environmentally friendly catalytic combustion // Eurasian Chemico-Technological J. 2015. V. 17. Р. 145-158.
Ismagilov Z.R., Shikina N.V., Yashnik S.A., Zagoruiko A.N., Kerzhentsev M.A., Usha kov V.A., Sazonov V.A., Parmon V.N., Zakharov V.M., Braynin B.I., Favorskii O.N. Technology of methane combustion on granulated catalysts for environmentally friendly gas turbine power plants // Catal. Today. 2010. V. 155. P. 35-44.
Yashnik S.A., Shikina N.V., Ismagilov Z.R., Zagoruiko A.N., Kerzhentsev M.A., Parmon V.N., Zakharov V.M., Braynin B.I., Favorski O.N., Gumerov A.M. Structured catalyst and combined reactor loading for methane combustion in a gas turbine power plant // Catal. Today. 2009. V. 147. P. S237-S243.
Tsyrulnikov P.G., Tsybulya S.V., Kryukova G.N., Boronin A.I., Koscheev S.V., Starostina T.G., Bubnov A.V., Kudrya E.N. Phase transformations in the thermoactivated MnOx-AhO3 catalytic system // J. Molec. Catal., A. 2002. V. 179. P. 213-220.
Цырульников П.Г., Сальников В.С., Дроздов В.А., Стукен С.А., Бубнов А.В., Григоров Е.И., Калинкин А.В., Зайковский В.И. Исследование термоактивации алюмомарганцевых катализаторов полного окисления // Кинетика и катализ. 1991. Т. 32 (2). С. 439-446.
Sharma S., Hegde M.S. Single step direct coating of 3-way catalysts on cordierite monolith by solution combustion method: high catalytic activity of Ce0.98Pd0.02O2-s // Catal. Lett. 2006. V. 112. P. 69-75.
Russo N., Mescia D., Fino D., Saracco G., Specchia V. N2O decomposition over perovskite catalysts // Ind. Eng. Chem. Res. 2007. V. 46. P. 4226-4231.
Ismagilov Z.R., Mansurov Z.A., Shikina N.V., Yashnik S.A., Aldashukurova G.B., Mironenko A.V., Kuznetsov V.V., Ismagilov I.Z. Nanosized Co-Ni / Glass Fiber Catalysts Prepared by “Solution-Combustion” Method // Nanoscience and Nanotechnology. 2013. V. 3 (1). P. 1-9.
Aldashukurova G.B., Mironenko A.V., Mansurov Z.A., Shikina N.V., Yashnik S.A., Kuznetsov V.V., Ismagilov Z.R. Synthesis gas production on glass cloth catalysts modified by Ni and Co oxides // J. Energy Chemistry. 2013. V. 22. P. 811-818.
Kapteijn F., Smgoredjo L., Andreini A., Moljin J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia // Appl. Catal., B. 1994. V. 3. P.173-189.
Leith I.R., Howden M.G. Temperature-Programmed Reduction of Mixed Iron-Manganese Oxide Catalysts in Hydrogen and Carbon Monoxide // Appl. Catal. 1988. V. 37. P. 75-92.
Stobbe E.R., de Boer B.A., Geus J.W. The reduction and oxidation behaviour of manganese oxides // Catal. Today. 1999. V. 47. P. 161-167.
Kapteijn F., van Langeveld A.D., Moulijn J.A., Andreini A., Vuurman M.A., Turek A.M., Jehng J.M., Wachs I.E. Alumina-supported manganese oxide catalysts. I. Characterization: Effect of precursor and loading // J. Catal. 1994. V. 150. P. 94-104.
Koh D.J., Chung J.S., Kim Y.G., Lee J.S., Nam I.-S., Moon S.H. Structure of Mn-Zr Mixed Oxide Catalysts and Their Catalytic Properties in the CO Hydrogenation Reaction // J. Catal. 1992. V. 138. P. 630-639.
 Influence of the conditions of pretreatment of Mn-containing catalyst on its redox properties | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2017. № 10. DOI: 10.17223/24135542/10/4

Influence of the conditions of pretreatment of Mn-containing catalyst on its redox properties | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2017. № 10. DOI: 10.17223/24135542/10/4

Download full-text version
Counter downloads: 549