Xylan catalytic processing to produce formic acid and xylitol in the presence of heteropoly acids | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2018. № 11. DOI: 10.17223/24135542/11/1

Xylan catalytic processing to produce formic acid and xylitol in the presence of heteropoly acids

Gradually decreasing high-quality stocks of nonrenewable fossil resources neces-sitate creating technologies based on the processing of an alternative, renewable, environmentally friendly raw material, plant biomass (lignocellulose). One of the promising research areas in biomass transformation is the development of one-pot processes for the direct production of valuable chemicals from plant raw materials over bifunctional catalysts. The plant polysaccharide xylan, which is contained in ag-ricultural wastes such as corn cobs and sunflower husks, can be clearly identified as a promising raw material for its direct one-pot processing to chemicals. When a one-pot hydrolysis-oxidation process is used, xylan can be transformed into formic acid, which is a promising reducing agent and an alternative to molecular hydrogen. The transformation of the xylan via a one-pot hydrolysis-hydrogenation enables obtaining xylitol, known to be a sugar substitute in the food and pharmaceutical industries. The aim of this work was a systematic study of one-pot hydrolysis-oxidation and hydrolysis-hydrogenation processes of xylan into formic acid and xylitol, respectively, in the presence of promising bifunctional catalysts based on heteropoly acids. Hydrolysis-oxidation of xylan was studied in a solution of the bifunctional Mo-V-P heteropoly acid catalyst (HPA). The composition of the catalyst was Co0.6H3.8PMo10V2O40. The HPA was obtained from the stoichiometric mixture of V2O5, MoO3, H2O2, H3PO4, and CoCO3 precursors. The catalyst developed possessed both acidic and vanadium-bound oxidation catalytic centers. Transformations of the polysaccharide were carried out in an autoclave under hydrothermal conditions at temperatures of 100-120 °C and a 20 bar air mixture pressure. To obtain kinetic da-ta, samples of the reaction mixture were collected from the autoclave for HPLC and total organic carbon analysis. An optimal process temperature of 120 °C was deter-mined for the hydrolysis-oxidation reaction of xylan to formic acid. A 42% yield of formic acid was reached under the optimal conditions. The conversion of xylan to xylitol via the hydrolysis-hydrogenation process was studied in the presence of a solid bifunctional catalyst of ruthenium nanoparticles supported on an acidic support of cesium salt of Si-W heteropolyacid, 1% Ru/Cs3HSiW12O40. The transformation of xylan was carried out in a high-pressure autoclave under hydrogen atmosphere (50 atm) and at 160-190 °C temperatures. The catalyst testing enabled a 32% xylan yield under optimal conditions (190 °C and a reaction time of 10 h).

Download file
Counter downloads: 206

Keywords

гидролиз-окисление, гидролиз-восстановление, ксилан, муравьиная кислота, ксилит, бифункциональный катализатор, гетерополикис-лота, рутений, hydrolysis-oxidation, hydrolysis-reduction, xylan, formic acid, xyli-tol, bifunctional catalyst, heteropolyacid, ruthenium

Authors

NameOrganizationE-mail
Medvedeva Tatyana B.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciencestanmedvedeva@catalysis.ru
Gromov Nikolai V.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical Universitygromov@catalysis.ru
Rodikova Julia A.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciencesrodikova@catalysis.ru
Timofeeva Maria N.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University
Zhizhina Elena G.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Scienceszhizh@catalysis.ru
Aymonier CyrilInstitut de Chimie de la Matiere Condensee de Bordeaux
Taran Oxana P.Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical Universityoxanap@catalysis.ru
Всего: 7

References

Bhaumik P., Dhepe P.L. Solid acid catalyzed synthesis of furans from carbohydrates // Catalysis Reviews. 2016. V. 58, № 1. P. 36-112.
Van Putten R.-J., van der Waal J.C., de Jong E. et al. Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources // Chemical Reviews. 2013. V. 113, №3. P. 1499-1597.
Besson M., Gallezot P., Pinel C. Conversion of Biomass into Chemicals over Metal Catalysts // Chemical Reviews. 2014. V. 114, № 3. P. 1827-1870.
Spiridon I. Hemicelluloses: structure and properties // Polysaccharides. Structural diversity and functional versatility. 2nd ed. New York : Marcel Dekker, 2005. P. 475-487.
Deutschmann R., Dekker R.F.H. From plant biomass to bio-based chemicals: Latest developments in xylan research // Biotechnology Advances. 2012. V, 3. № 6. P. 16271640.
Heinze T. Chemical Functionalization of Cellulose // Polysaccharides. Structural diversity and functional versatility. 2nd ed. New York : Marcel Dekker, 2005. P. 551.
Deng W., Zhang Q., Wang, Y. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids // Catalysis Today. 2014. V. 234. P. 31-41.
Li J., Ding D.-J., Deng L. et al. Catalytic Air Oxidation of Biomass-Derived Carbohydrates to Formic Acid // ChemSusChem. 2012. V. 5, № 7. P. 1313-1318.
Weber M., Wang J.T., Wasmus S. et al. Formic Acid Oxidation in a Polymer Electrolyte Fuel Cell: A Real-Time Mass-Spectrometry Study // Journal of The Electrochemical Society. 1996. V. 143, № 7. P. L158-L160.
Serrano-Ruiz J.C., Braden, D.J., West R.M. et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen // Applied Catalysis B: Environmental. 2010. V. 100. P. 184-189.
Zhizhina E.G., Matveev K.I., Russkikh V.V. Catalytic Synthesis of 1,4-Naphtho- and 9,10-Anthraquinones According to the Diene Synthesis Reaction for Pulp and Paper Industry // Chemistry for Sustainable Development. 2004. V. 12, № 1. P. 47-51.
Wolfel R., Taccardi N., Bosmann A. et al. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen // Green Chemistry. 2011. V. 13, № 10. P. 2759-2763.
Albert J., Wolfel R., Bosmann A. et al. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators // Energy & Environmental Science. 2012. V. 5, № 7. P. 7956-7962.
Lu T., Hou Y., Wu W. et al. Formic acid and acetic acid production from corn cob by catalytic oxidation using O2 // Fuel Processing Technology. 2018. V. 171. P. 133-139.
Zhang J., Sun M., Liu X. et al. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields // Catalysis Today. 2014. V. 233. P. 77-82.
Reichert J., Albert J. Detailed Kinetic Investigations on the Selective Oxidation of Biomass to Formic Acid (OxFA Process) Using Model Substrates and Real Biomass // ACS Sustainable Chemistry & Engineering. 2017. V. 5, № 8. P. 7383-7392.
Tian J. et al. Hydrolysis of Cellulose over CsxH3-xPW12O40 (x = 1-3) Heteropoly Acid Catalysts // Chemical Engineering Technology. 2011. V. 34, № 3. P. 482-486.
Pank S. et.al. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulse performance // Biotechnology for Biofuels. 2010. V. 46. P. 69356937.
Kozhevnikov I.V. Catalysis by polyoxometalates. Liverpool : Wiley, 2002. 201 p.
Grosh A.K., Moffat J.B. Acidity of heteropoly compounds // J. Catalysis. 1986. V. 101. P. 238-242.
Rafiee E., Jafari H. A practical and green approach towards synthesis of dihydropyrimidinones: Using heteropoly acids as efficient catalysts // Bioorganic & Medicinal Chemistry Letters. 2006. V. 16, № 9. P. 2463-2466.
Evtuguin D.V., Pascoal Neto C., Pedrosa De Jesus J.D. Bleaching of kraft pulp by oxygen in the presence of polyoxometalates // Journal of Pulp and Paper Science. 1998. V. 24, № 4. P. 133-140.
Shatalov A.A., Evtuguin D.V., Pascoal Neto, C. Cellulose degradation in the reaction system O2/heteropolyanions of series [PMo(i2-b)Vb040](3+b)- // Carbohydrate Polymers. 2000. V. 43, № 1. P. 23-32.
Gromov N.V., Taran O.P., Delidovich I.V. et al. Hydrolytic Oxidation of Cellulose to Formic Acid in the Presence of Heteropoly Acid Catalysts for Efficient Processing of Lignocellulosic Biomass // Catalysis Today. 2016. V. 278, № 1. P. 74-81.
Liu M., Deng W., Zhang Q., Wang Y., Wang Ye. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions // Chemical Communication. 2011. V. 47. P. 9717-9719.
Reyes-Luyanda D., Flores-Cruz J., Morales-Perez P.J. et al. Bifunctional Materials for the Catalytic Conversion of Cellulose into Soluble Renewable Biorefinery Feedstocks // Topics in Catalysis. 2012. V. 55, № 3. P. 148-161.
Ribeiro L.S., Delgado J.J., Orfao J.J.M., Ribeiro Pereira M.F. Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol // Applied Catalysis B: Environmental. 2017. V. 217. P. 265-274.
Ribeiro L.S., Delgado J.J., Orfao J.J.M., Ribeiro Pereira M.F. A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob xylan) // RSC Advanced. 2016. V. 6. P. 95320-95327.
Ennaert T., Feys S., Hendrikx D., Jacobs P.A., Sels B.F. Reductive splitting of hemicellu-lose with stable ruthenium-loaded USY zeolites // Green Chemistry. 2016. V. 18, № 19. P. 5295-5304.
Kusema B.T., Faba L., Kumar N. et al. Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst // Catalysis Today. 2012. V. 196, № 1. P. 26-33.
Mikkola J.-P., Vainio H., Salmi T., Sjoholm R., Ollonqvist T., Vayrynen J. Deactivation kinetics of Mo-suppoted Raney Ni catalyst in the hydrogenation of xylose to xylitol // Applied Catalysis A: Generall. 1999. V. 196, is. 1. P. 177-185.
Tathod A.P., Dhepe P.L. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts // Bioresource Technology. 2015. V. 178. P. 36-44.
Yi G., Zhang Y. One-Pot Selective Conversion of Hemicellulose (Xylan) to Xylitol under Mild Condition // ChemSuSChem Communications. 2012. V. 5. P. 1383-1387.
Одяков В.Ф., Жижина Е.Г., Максимовская Р.И., Матвеев К.И. Новые методы синтеза молибдованадофосфорных гетерополикислот // Кинетика и катализ. 1995. Т. 36, № 5. С. 795-300.
Odyakov V.F., Zhizhina E.G. A novel method of the synthesis of molybdovanadophos-phoric heteropoly acid solution // Kinetics and Catalysis. 2008. V. 95, № 1. P. 21-28.
Ayusheev A., Taran O., Seryak I., Podyacheva O., Descorme C., Besson M., Kibisa L., Boronina A., Romanenko A., Ismagilova Z., Parmona V. Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol // Applied Catalysis B: Environmental. 2014. V. 146. P. 177-185.
Lee K.-Y., Misono M. Heteropoly compounds // Handbook of heterogeneous catalysis. 1997. V. 1. P 118-131.
Hill C.L. Chapter 4.11 Polyoxometalates: Reactivity // Comprehensive Coordination Chemistry II: From Biology to Nanotechnology / eds: J.A. McCleverty, T.J. Meyer. San Diego : Elsevier Ltd., 2003.679-759 p.
Казанский Л.П. Исследование полиоксометаллатов методом ИК спектроскопии // Известия АН СССР. Сер. хим. 1975. T. 3. C. 499-520.
Gayraud P.-Y., Essayem N., Vedrine J.C. H3PW12O40 acid dispersed on its Cs salt: improvement of its catalytic properties by mechanical mixture and grinding // Catalysis Letters. 1998. V. 56. P. 35-41.
Bobleter O. Hydrothermal degradation and fractionation of saccharides // Polysaccha-rides. Structural diversity and functional versatility. 2nd ed. New York : Marcel Dekker, 2005. P. 893-913.
Bhaumik P., Dhepe P.L. Solid acid catalyzed synthesis of furans from carbohydrates. Catalysis Reviews. 2016;58(1):36-112.
 Xylan catalytic processing to produce formic acid and xylitol in the presence of heteropoly acids | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2018. № 11. DOI: 10.17223/24135542/11/1

Xylan catalytic processing to produce formic acid and xylitol in the presence of heteropoly acids | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2018. № 11. DOI: 10.17223/24135542/11/1

Download full-text version
Counter downloads: 752