Catalytic wet air oxidation of phenol in the presence of catalysts based on highly dispersed Ru supported on carbon nanotubes | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2018. № 11. DOI: 10.17223/24135542/11/6

Catalytic wet air oxidation of phenol in the presence of catalysts based on highly dispersed Ru supported on carbon nanotubes

The large volumes of organic pollutants formed by various industrial plants are very dangerous for the environment and human health. Phenol and its derivatives are particularly harmful substances. An important problem in the field of phenol utilization is the impossibility of PhOH conversion by traditional biotechnologies due to phenol's high toxicity with respect to microorganisms. This makes necessary to develop a new, efficient technology for processing ofphenol pollutants. Catalytic wet air oxidation is proposed as a method of utilization ofphenols. Both soluble (based on salts and complexes of transition metals) and solid (for example, highly dispersed platinum group metals supported on inert carbon substrates) catalysts are proposed for wet air oxidation of organic substrates, but solid catalytic systems are more promising than soluble ones due to easy regeneration and separation from the reaction medium. The purpose of this work was the preparation of catalysts based on ruthenium na-noparticles supported on carbon nanotubes modified by nitrogen and testing of the catalysts prepared in the wet air oxidation of organic pollutants. The work is a logical development of our research aimed at creating methods for the environmentally friendly disposal of organic pollutants in the presence of highly dispersed ruthenium catalysts deposited on various types of carbon carriers (graphite-like material, sibunite, and carbon nanofibers). Bamboo-like carbon nanotubes doped with nitrogen (N-MCNT) with a modifying additive content of 0, 2, 3 and 6 wt. % were synthesized. N-MCNT supports were prepared by catalytic decomposition of the ethylene-ammonia mixture in the presence of the 62Fe-8Ni-30AhO3 catalyst, and 3 wt. % of Ru nanoparticles were precipitated onto the prepared supports. The catalysts of 3%Ru/N-MCNT and their supports were investigated by a number of physico-chemical methods, namely TEM, nitrogen adsorption, XPS, and ACP-ICP. The composition of the catalysts was confirmed, the size of the Ru nanoparticles was found to be 1.4-1.9 nm, and no change in the structure of N-MCNTs occurred during the metal deposition. Precipitation of Ru did not lead to a significant change in the textural characteristics of the supports. The size of the metal nanoparticles was inversely proportional to the nitrogen content, i.e., nitrogen promoted the stabilization of small nanoparticles. An XPS study showed that 3% of Ru/N-MCNTs also contains atoms of Fe (up to 2 wt. %), which are the remains of the 62Fe-8Ni-30AhO3 catalyst that was not removed during washing. Developed 3 %Ru /N-MCNT catalysts and their N-MCNT supports were tested in the wet air oxydation of phenol used as an example organic pollutant at 160°C. Three percent Ru/N-MCNT catalysts was found to be highly effective in the utilization of phenol. In the presence of the catalytic systems created, 100% conversion ofphenol was achieved, with a residual balance of total organic carbon of 25-30% of the initial value. At the same time, the presence of iron impurities made it impossible to clearly show the impact of nitrogen modification of nanotubes on the catalytic activity of N-MCNT supports and, consequently, on the activity of 3% Ru/N-MCNT catalysts. Further efforts in this field of research will be concentrated, among other things, on improving the quality of the catalyst composition.

Download file
Counter downloads: 263

Keywords

органический загрязнитель, фенол, жидкофазное окисление, кислород, воздух, рутений, углеродные нанотрубки, organic waste, phenol, wet air oxidation, ruthenium, carbon nanotube

Authors

NameOrganizationE-mail
Suboch Arina N.Novosibirsk State Universityarina@catalysis.ru
Gromov Nikolai V.Boreskov Institute of Catalysis Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical Universitygromov@catalysis.ru
Medvedeva Tatyana B.Boreskov Institute of Catalysis Siberian Branch of the Russian Academy of Sciencestanmedvedeva@catalysis.ru
Kibis Lidia S.Novosibirsk State Universitykibis@catalysis.ru
Gerasimov Evgeniy Yu.Boreskov Institute of Catalysis Siberian Branch of the Russian Academy of Sciencesgerasimov@catalysis.ru
Ayusheev Artemiy B.NIOSTLtda.ayusheev@gmail.com
Podyacheva Olga Yu.Novosibirsk State Universitypod@catalysis.ru
Taran Oxana P.Boreskov Institute of Catalysis Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical Universityoxanap@catalysis.ru
Всего: 8

References

Обзор состояния и загрязнения окружающей среды в Российской Федерации за 2016 год / Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет) ; под ред. Г.М. Черногаевой и др. М., 2017. URL: http://www.meteorf.ru/product/infomaterials/90/
Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ / ред. Ю.В. Поконова; В.И.Стархова. СПб. : Мир и Семья, Профессионал, 2005. Ч. I, II.
Филатов В.А., Иван Б.А., Мусийчук Ю.И. Кислородсодержащие органические соединения. Ч. I // Вредные вещества в окружающей среде. СПб. : Профессионал, 2007. С. 107-113.
Autenrieth R.L., Bonner J.S., Akgerman A., 0kaygun M. Biodegradation of phenolic wastes // J. Hazard. Mater. 1991. V. 28, № 1-2. P. 29-53.
Пат. 2665249 США, МПК CI 210-2. Waste Disposal / F.J. Zimmermann, W.Wis; заявитель и патентообладатель Sterling Drug Inc. Опубл. 5 янв. 1954.
Siemens : [официальный сайт компании]. URL: https://www.siemens.com/global/en/ home/markets/water/waste-water-treatment.html#
Cao Y., Li B., Zhong G. et al. Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons // Carbon. 2018. V. 133. P. 464-473.
Gallezot P., Chaumet S., Perrard A. et al. Catalytic Wet Air 0xidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts // Journal of Catalysis. 1997. V. 168. № 1. P. 104-109.
Mishra V.S., Mahajani V.V., Joshi J.B. Wet air oxidation // Ind. Eng. Chem. Res. 1995. V. 34, № 1. P. 2-48.
Zhao X., Ma J., Jiang J. et al. Phenols and anilines degradation by permanganate in the absence / presence of carbon nanotubes: 0xidation and dehalogenation // Separation and Purification Technology. 2016. V. 170. P. 344-352.
Luck F. Wet air oxidation: past, present and future // Catalysis Today. 1999. V. 53, № 1. P. 81-91.
Stuber F., Font J., Fortuny A. et al. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater // Topics in Catalysis. 2005. V. 33, № 1-4. P. 3-50.
Taran 0.P., Descorme C., Polyanskayа E.M. et al. Sibunit Based Catalytic Materials for the Deep 0xidation of 0rganic Ecotoxicants in Aqueous Solutions. III: Wet Air 0xidation of Phenol over 0xidized Carbon and Ru/C Catalysts // Catalysis in Industry. 2013. V. 5, № 2. P. 164-174.
Taran 0.P., Polyanskaya E.M., 0gorodnikova 0.L. et al. Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. II: Wet peroxide oxidation over oxidized carbon catalysts // Catalysis in Industry. 2011. V. 3, № 2. P. 161-169.
Taran 0.P., Polyanskaya E.M., 0gorodnikova 0.L. et al. Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples // Catalysis in Industry. 2011. V. 2, № 4. P. 381-386.
Ismagilov Z., Shalagina A., Podyacheva 0. et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers // Carbon. V. 47, № 8. P. 1922-1929.
Podyacheva 0., Ismagilov Z., Boronin A. et al. Platinum nanoparticles supported on nitrogen-containing carbon nanofibers // Catalysis Today. 2012. V. 186, № 1. P. 42-47.
Ayusheev A., Taran 0., Seryak I. et al. Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol // Applied Catalysis B: Environmental. 2014. V. 146. P. 177-185.
Субоч А.Н., Кибис Л.С., Стонкус О.А. и др. Синтез и исследование многостенных углеродных нанотрубок, допированных азотом // Химия в интересах устойчивого развития. 2017. № 1. С. 85-91.
Reshetenko T.V., Avdeeva L.B., Khassin A.A. et al. Coprecipitated iron-containing catalysts (Fe-Ak03, Fe-Co-Ak03, Fe-Ni-Ak03) for methane decomposition at moderate temperatures. I. Genesis of calcined and reduced catalysts // Applied Catalysis A. 2004. V. 268. P. 127-138.
Avdeeva L.B., Kochubey D.I., Shaikhutdinov S.K. Cobalt catalysts of methane decomposition: accumulation of the filamentous carbon // Applied Catalysis A. 1999. V. 177. P. 43-51.
Susi T., Pichler T., Ayala P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms // J. Nanotechnol. 2015. V. 6, № 1. P. 177-192.
Bulusheva L.G., Okotrub A.V., Fedoseeva Y.V. et al. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition // Phys. Chem. Chem. Phys. 2015. V. 17, № 37. С. 23741-23747.
Zhang X., Chan K.-Y. Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties // Chem. Mater. 2003. V. 15, № 2. С. 451-459.
Cattaneo C., Sanchez de Pinto M.I., Mishima H. et al. Characterization of platinum-rutheniun electrodeposits using XRD, AES and XPS analysis // J. Elecroanal. Chem. 1999. V. 461. № 1-2. Р. 32-39.
Hsieh T.-F., Chuang C.-C., Chen W.-J. et al. Hydrous ruthenium dioxide / multi-walled carbon-nanotube / titanium electrodes for supercapacitors // Carbon. 2012. V. 50, № 5. P. 1740-1747.
Полянская Е.М. Исследование катализаторов на основе наноразмерных углеродных материалов в реакциях глубокого жидкофазного окисления органических субстратов кислородом и пероксидом водорода : дис.. канд. хим. наук : 02.00.15. Новосибирск, 2011. 161 с.
 Catalytic wet air oxidation of phenol in the presence of catalysts based on highly dispersed Ru supported on carbon nanotubes | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2018. № 11. DOI: 10.17223/24135542/11/6

Catalytic wet air oxidation of phenol in the presence of catalysts based on highly dispersed Ru supported on carbon nanotubes | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2018. № 11. DOI: 10.17223/24135542/11/6

Download full-text version
Counter downloads: 752