Quasibinary section of AgGaSe2-PbS
In recent years, researchers in optoelectronics have been interested in investigating the compound AIBIIICVI2 (AI-Cu, Ag; BIII-Ga, In ; CVI-S, Se) with a chalcopyrite structure and the solid solutions. This attention is mainly due to the promising use of copper and silver-containing representatives of these compounds (CuInS2, CuInSe2) with p-type conductivity as an absorbing layer of thinfilm solar cells. The ligatures (AgGaSe2, PbSe) were synthesized in evacuated quartz ampoules from elements taken in appropriate ratios at 1150 and 1370 Kfor 3 h, followed by air cooling. Pb, Ag, Ga, and Se of high purity with a basic substance content of at least 99.999% were used as starting materials. The samples were annealed at 600 K for 300-350 h. Samples of the AgGaSe2-PbSe section were synthesized at 1150-1370 K. The samples obtained were annealed at 600 K for 350 h. The XRD, DTA, and metallographic analysis, microhardness and density measurements were used to study phase equilibria in the AgGaSe2-PbSe section of the Ag2Se-Ga2Se3-PbSe quasi-ternary system. The T-x phase diagram of the system was constructed, and the presence of a quaternary compound of the composition AgPb2GaSe4, formed at 1110 K by the peritectic reaction, was established. The conditions of formation were determined, and the physicochemical properties of the AgPb2GaSe4 compound were studied. It was found that the AgPb2GaSe4 compound crystallized in the orthorhombic system with the crystal lattice parameters a = 8.5201, b = 7.2311, c = 6.9203 Å, Sp.gr. Pmn21. It was shown that the solubility based on AgGaSе2 at room temperature reached 12 mol.% (β-phase), and on the basis of PbSe, 8 mol.%AgGaSe2.
Keywords
AgGaSe2-PbSe system,
peritectic,
AgPb2GaSe4 compound,
eutectic,
solid solutionAuthors
| Mammadov Sharafat Gadzhiaga | Institute of Catalysis and Inorganic Chemistry M. Nagiyev National Academy of Sciences | azxim@mail.ru |
Всего: 1
References
Deloume J.-P., Faure R. Un nouveau materiau, Ag9GaSe6: Etude structurale de la phase a // J. Solid State Chem. 1981. Vol. 36 (1). Р. 112-117.
Olekseyuk I.D., Gulay L.D., Parasyuk O.V., Husak O.A., Kadykalo E.M. Phase Diagram of the AgGaSe2-CdSe and Crystal Structure of the AgCd2GaSe4 Compound // J. Alloys Compd. 2002. Vol. 343. Р. 125-131.
Mikkelsen J.C. Ag2Se-Ga2Se3 Pseudobinary Phase Diagram // Mater. Res. Bull. 1977. Vol. 12. Р. 497-502.
Bodnar’ I.V., Orlova N.S. X-ray Evidence of Thermal-Expansion Anisotropy in AgGaSe2 at 80-650 K) // Izv. Acad. Nauk SSSR, Neorg. Mater. 1987. Vol. 23. Р. 758-761.
Абрикосов Н.Х., Шелимова Л.Е. Полупроводниковые материалы на основе соединений AIVBVI. М. : Наука, 1975. 195 с.
Шелимова Л.Е., Томашик В.Н., Грыцив В.И. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Ge, Sn, Pb). М. : Наука, 1991. 368 с.
Halka V.O. Phase Equilibria in the AI2X-BIIX-CIII2X3 Quasiternary Systems (A!-Cu, Ag; Bn-Zn, Cd, Hg; CIn-Ga, In; X-S, Se, Te) : doctoral thesis. L’viv, 2001.
Olekseyuk I.D., Halka V.O., Parasyuk O.V., Voronyuk S.V. Phase Equilibria in the AgGaS2-ZnS and AgInS2-ZnS Systems // J. Alloys Compd. 2001. Vol. 325. Р. 204-209.
Olekseyuk I.D., Parasyuk O.V., Dzham O.A., Piskach L.V. The Reciprocal CuInS2 + 2CdSe, CuInSe2 + 2CdS System. Part I. The Quasi-Binary CuInSe2-CdSe System: Phase Diagram and Crystal Structure of Solid Solutions // J. Solid State Chem. 2006. Vol. 179. Р. 315-322.
Schorr S., Tovar M., Stüßer N., Bente K. Investigation of Structural Anomaly and Metal Ordering in the Solid Solution 2ZnS-CuInS2 by Neutron Diffraction // Phys. Rev. B. 2004. Vol. 350. Р. E411-E414.
Olekseyuk I.D., Davidyuk H.Ye., Parasyuk O.V., Voronyuk S.V., Halka V.O., Oksyuta V.A. Phase Diagram and Electric Transport Properties of the Samples of the Quasi-Binary System CuInS2-CdS // J. Alloys Compd. 2000. Vol. 309. Р. 39-44.
Schorr S., Tovar M., Sheptyakov D., Keller L., Geandier G. Crystal Structure and Cation Distribution in the Solid Solution Series 2(ZnX)-CuInX2 (X = S, Se, Te) // J. Phys. Chem. Solids. 2005. Vol. 66. Р. 1961-1965.
Bodnar’ I.V., Chibusova L.V. Phase Diagram of the CuInSe2-2ZnSe System // Rus. J. Inorg. Chem. 1998. Vol. 43. Р. 1783-1785.
Parasyuk O.V., Voronyuk S.V., Gulay L.D., Davidyuk G.Ye., Halka V.O. Phase Diagram of the CuInS2-ZnS System and Some Physical Properties of Solid Solutions Phases // J. Alloys Compd. 2003. Vol. 348. Р. 57-64.
Wagner G., Lehmann S., Schorr S., Spemann D., Doering Th. The Two-Phase Region in 2(ZnSe)x(CuInSe2)1-x Alloys and Structural Relation Between the Tetragonal and Cubic Phases // J. Solid State Chem. 2005. Vol. 178. Р. 3631-3638.
Wagner G., Fleischer F., Schorr S. Extension of the Two-Phase Field in the System 2(ZnS)x(CuInS2)1-x and Structural Relationship Between the Tetragonal and Cubic Phase // J. Cryst. Growth. 2005. Vol. 283. Р. 356-366.
Karg F. High Efficiency CIGS Solar Modules // Energy Proc. 2012. Vol. 15. Р. 275-282.
Grima Gallardo P. Order-Disorder Phase Transitions in DII2x(AIBIII)1-xCVI2 Alloy Systems // Phys. Stat. Sol. A. 1992. Vol. 134. Р. 119-125.
Uhl A.R., Koller M., Wallerand A.S., Fella C.M., Kranz L., Hagendorfer H., Romanyuk Y.E., Tiwari A.N., Yoon S., Weidenkaff A., Friedlmeier T.M., Ahlswede E.D., Van Genechten D., Stassin F. Cu(In, Ga)Se2 Absorbers from Stacked Nanoparticle Precursor Layers // Thin Solid Films. 2013. Vol. 535. Р. 138-142.
Jager-Waldau A. Progress in Chalcopyrite Compound Semiconductor Research for Photo voltaic Applications and Transfer of Results into Actual Solar Cell Production // Sol. Energy Mater. Sol. Cells. 2011. Vol. 95. Р. 1509-1517.