The use of special electrolytes with co-dissolved biodegradable polymers for the production of bioactive calciumphosphate coatings by microarc oxidation (МАО)
Today, metal implants for various purposes are an integral part of surgical practice in traumatology and orthopedics. Meanwhile, cases of implant rejection are common and the rate of new bone growth on an untreated metal surface is low. The rate of recovery of a patient directly depends on the rate of regeneration of body tissues, and the rate of regeneration is determined by the behavior of cells at the site of surgery. One of the proposed solutions is the use of bioactive coatings that improve the biocompatibility of implants, improve cell proliferation and adhesion. A widespread resource of such coatings is calcium phosphates of various origins, such as ones obtained by micro-arc oxidation. Among the techniques of coating obtainment, a great interest was the method of micro-arc oxidation (MAO). The MAO method allows obtaining porous, rough coating with a specified chemical composition that plays an important role in osteoconductionprocess. However, fragility of obtained coatings is significantly higher than bone fragility. Thus, mechanical inconsistencies may affect on integrity of obtained coating during implantation. The paper proposes a method for the formation of hybrid calcium-phosphate coatings by micro-arc oxidation using an electrolyte based on calcium oxide with an admixture of dispersed particles of hydroxyapatite and co-dissolved biodegradable polymers: chitosan, polyvinylpyrrolidone, and hyaluronic acid. It is assumed that the polymers will act as a plasticizer. The resulting coatings are calcium-deficient and highly porous. It is shown that the introduction of polymers into an electrolyte solution improves the elasticity, specific amount and average pore diameter, and also does not lead to a deterioration in the biocompatibility of coatings.
Keywords
microarc oxidation,
biodegradable polymers,
calcium phosphate coatings,
macrophages,
bone implantsAuthors
| Volokhova Apollinaryia A. | Tomsk State University; Tomsk Polytechnic University | rapollinari-ya@gmail.com |
| Soldatova Elena A. | Tomsk Polytechnic University | kleine_harey92@mail.ru |
| Churina Elena G. | Tomsk State University; Siberian State Medical University | lena1236@yandex.ru |
| Laput Olesya A. | Tomsk State University | olesyalaput@gmail.com |
| Tverdokhlebov Sergei I. | Tomsk Polytechnic University | tverd@tpu.ru |
Всего: 5
References
Steinemann S.G. Metal implants and surface reactions // Injury. 1996. V. 27. P. S/C16- S/C22.
Schliephake H. et al. Biomimetic calcium phosphate composite coating of dental implants // International Journal of Oral & Maxillofacial Implants. 2006. V. 21, № 5. P. 738-746.
Fraker A.C., Ruff A.W. Metallic surgical implants: state of the art // JOM. 1977. V. 29, № 5. P. 22-28.
Asri R.I.M. et al. Corrosion and surface modification on biocompatible metals : a review // Materials Science and Engineering: C. 2017. V. 77. P. 1261-1274.
Geetha M. et al. Ti based biomaterials, the ultimate choice for orthopaedic implants : a review // Progress in materials science. 2009. V. 54, № 3. P. 397-425.
Montazeri M. et al. Investigation of the voltage and time effects on the formation of hy droxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior // Applied Surface Science. 2011. V. 257, № 16. P. 72687275.
Hotchkiss K.M. et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation // Acta biomaterialia. 2016. V. 31. P. 425-434.
Bose S., Tarafder S., Bandyopadhyay A. Hydroxyapatite coatings for metallic implants // Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing, 2015. P. 143-157.
Leeuwenburgh S. et al. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro // Journal of Biomedical Materials Research: an Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2001. V. 56, № 2. P. 208-215.
Бардин И.В. и др. Микродуговое оксидирование // Металлургия машиностроения. 2013. № 1. С. 27-35.
Wheeler J.M. et al. Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti-6Al-4V // Surface and Coatings Technology. 2010. V. 204, № 2122. P. 3399-3409.
Vishwakarma A. et al. Engineering immunomodulatory biomaterials to tune the inflammatory response // Trends in biotechnology. 2016. V. 34, № 6. P. 470-482.
Kastellorizios M., Tipnis N., Burgess D.J. Foreign body reaction to subcutaneous implants // Immune Responses to Biosurfaces. 2015. V. 865. P. 93-108.
Alvarez M.M. et al. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications // Journal of Controlled Release. 2016. V. 240. P. 349-363.
Мощенок В.И. и др. Определение нанотвердости материалов с использованием различных методов анализа кривой индентивания // Вопросы проектирования и производства конструкций летательных аппаратов. 2011. № 1. С. 102-107.
Ракина А.А., Солдатова Е.А. Модифицированные биодеградируемыми полимерами кальций-фосфатные покрытия на поверхности титановых имплантатов. Оценка иммунной реакции организма человека // Перспективные материалы конструкционного и медицинского назначения : сб. тр. Междунар. науч.-техн. молодежной конф., г. Томск, 26-30 ноября 2018 г. Томск, 2018. С. 363-364.
Kumar P., Nagarajan A., Uchil P.D. Analysis of cell viability by the alamarBlue assay // Cold Spring Harbor Protocols. 2018. V. 2018, № 6. P. 462-470.
Abdelrhman Y. et al. Compatibility assessment of new V-free low-cost Ti-4.7 Mo-4.5 Fe alloy for some biomedical applications // Materials & Design. 2016. V. 97. P. 445453.
Rainer B.D. A perspective on titanium biocompatibility // Titanium in medicine. Berlin ; Heidelberg : Springer, 2001. P. 1-12.
Strieter R.M. et al. Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-alpha, LPS, and IL-1 beta // Science. 1989. V. 243, № 4897. P. 1467-1469.
Dinarello C.A. Biology of interleukin 1 // The FASEB Journal. 1988. V. 2, № 2. P. 108115.
Akira S. et al. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF) // The FASEB Journal. 1990. V. 4, № 11. P. 2860-2867.
Saraiva M., O'garra A. The regulation of IL-10 production by immune cells // Nature reviews immunology. 2010. V. 10, № 3. P. 170-181.