The process of peroxide delignification of aspen wood in the medium “formic acid - water” for nanofibrillated cellulose obtaining | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2021. № 23. DOI: 10.17223/24135542/23/4

The process of peroxide delignification of aspen wood in the medium “formic acid - water” for nanofibrillated cellulose obtaining

The influence of various catalysts (TiO2, H2SO4, MnSO4, C2H2O4, (NH4) 6Mo7O24) on the yield and composition of celluloses obtained by peroxide delignification in the medium "formic acid - water" of aspen wood, from which hemicelluloses were removed by water-alkaline extraction, was investigated. It was found that at a process temperature of 90 °C all catalysts have high delignification ability. The content of residual lignin in the celluloses varies from 0.6 to 2.8 wt. %. By controlled hydrolysis with sulfuric acid and sonication treatment of cellulose with a low residual lignin content (0.6 wt.%), Nanofibrillated cellulose with an average hydrodynamic particle diameter of 29.2 nm was obtained. According to AFM data, the surface of the nano-fibrillated cellulose film is formed by particles with a diameter about 63 nm and does not contain external inclusions.

Download file
Counter downloads: 49

Keywords

aspen wood, peroxide delignification, formic acid, catalysts, nano-fibrillated cellulose

Authors

NameOrganizationE-mail
Garyntseva Natalya V.Krasnoyarsk Scientific Center SB RASgaryntseva@icct.ru
Vorob’yev Sergey A.Krasnoyarsk Scientific Center SB RASyekspatz@yandex.ru
Karacharov Anton A.Krasnoyarsk Scientific Center SB RASkaracharov@icct.ru
Всего: 3

References

Niu F., Li M., Huang Q., Zhang X., Pan W., Yang J., Li J. The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance // Carbohydrate Polymers. 2017. Vol. 165. Р. 197-204.
Ghaffar S.H., Fan M. Structural analysis for lignin characteristics in biomass straw // Biomass and Bioenergy. 2013. Vol. 57. Р. 264-279.
Гермер Э.И. Химизм делигнификации при органосольвентных варках // Известия вузов. Лесной журнал. 2003. № 4. С. 99-108.
Cheng Sh., Huang A., Wang Sh., Zhang Q. Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood // BioResources. 2016. Vol. 11 (2). Р. 4006-4016.
Shrotri A., Kobayashi H., Fukuoka A. Chapter two - Catalytic conversion of structural carbohydrates and lignin to chemicals // Advances in Catalysis. 2017. Vol. 60. Р. 59-123.
Pandey K.K., Pitman A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi // International Biodeterioration & Biodegradation. 2003. Vol. 52. Р. 151-160.
ГОСТ 2789-73 (Рекомендация ИСО Р 286). Шероховатость поверхности. Параметры и характеристики. М. : Стандартинформ, 2006. 7 с.
Park S., Baker J.O., Himmel M.E., Parilla P.A., Jonson D.K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnol. Biofuels. 2010. Vol. 3. DOI: 10.1186/1754-6834-3-10
Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. М. : Экология, 1991. 321 с.
Торгашов В.И., Соловьева Л.В., Зубец О.В., Капуцкий Ф.Н. Получение ксилана фармацевтического качества из древесины березы // Вестник БГУ. Сер. 2. 2014. № 1. С. 21-26.
Яценкова О.В., Скрипников А.М., Карачаров А.А., Мазурова Е.В., Воробьев С.А., Кузнецов Б.Н. Новый метод получения микрофибриллированной целлюлозы из древесины ели // Химия растительного сырья. 2020. № 1. С. 303-314.
Marakana P.G., Dey A., Saini B. Isolation of nanocellulose from lignocellulosic biomass: synthesis, characterization, modification and potential application // Journal of Environmental Chemical Engineering. 2021. Vol. 9. Art. 106606.
Jiang J., Zhu Y., Jiang F. Sustainable isolation of nanocellulose from cellulose and ligno-cellulosicfeedstocks: Recent progress and perspectives // Carbohydrate Polymers. 2021. Vol. 267. Art. 118188.
Garyntseva N.V., Sudakova I.G., Chudina A.I., Malyar Yu.N., Kuznetsov B.N. Optimization of the process of abieswood peroxide delignification in the medium “formic acid-water” in the presence of TiO2 catalyst // J. Sib. Fed. Univ. Chem. 2019. Vol. 12 (4). Р. 522-535.
Kuznetsov B.N., Sudakova I.G., Tarabanko V.E., Yatsenkova O.V., Djakovitch L., Rataboulc F. Processes of catalytic oxidation for the production of chemicals from softwood biomass // Catalysis Today. 2021. Vol. 375. Р. 32-144.
Судакова И.Г., Гарынцева Н.В., Чудина А.И., Кузнецов Б.Н. Экспериментальная и математическая оптимизация процесса пероксидной делигнификации древесины лиственницы в присутствии катализатора MnSO4 // Катализ в промышленности. 2020. № 20 (1). С. 65-75.
Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Tarabanko V.E., Chesnokov N.V., Djakovitch L., Rataboul F. Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood // Topics in Catalysis. 2020. Vol. 63. Р. 229-242.
Kuznetsov B.N., Chesnokov N.V., Garyntseva N.V., Sudakova I.G., Pestunov A.V., Djakovitch L., Pinel C. Kinetic study and optimization of catalytic peroxide delignification of aspen wood // Kinetics and Catalysis. 2018. Vol. 59 (1). Р. 48-57.
Besson M., Gallezot P., Pinel C. Conversion of Biomass into Chemicals over Metal Catalysts // Chemical Reviews. 2014. Vol. 114 (3). Р. 1827-1870.
Li J., Chen C., Zhu J.Y., Ragauskas A.J., Hu L. In Situ Wood Delignification toward Sustainable Applications // Acc. Mater. Res. 2021. Vol. 2. Р. 606-620.
 The process of peroxide delignification of aspen wood in the medium “formic acid - water” for nanofibrillated cellulose obtaining | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2021. № 23. DOI: 10.17223/24135542/23/4

The process of peroxide delignification of aspen wood in the medium “formic acid - water” for nanofibrillated cellulose obtaining | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2021. № 23. DOI: 10.17223/24135542/23/4

Download full-text version
Counter downloads: 72