Determination of antimony(V) by cathodic adsorption voltammetry on a modified electrode
This paper presents the results on the development of a method for the determination of antimony (V) by the method of cathodic adsorption voltammetry in natural objects. As a sensor, it was proposed to use a graphite-containing electrode modified with rhodamine G. The electrode was formed by the method of layer-by-layer electrochemical assembly. Polyaniline synthesized by electrochemical polymerization was used as an inner layer. Rhodamine G on the surface ofpolyaniline was fixed by the method of cyclic voltammetry. The concentration of antimony on the electrode occurs due to the formation on the surface of the adsorbed complex of rhodamine G hexachloroantimonate during the anodic polarization of the electrode. It was found by UV spectroscopy that only antimony (V) forms an electroactive complex with rhodamine G. To convert antimony into an analytical form, it is proposed to use UV irradiation of a hydrochloric acid solution. The kinetics of the photooxidation process has been studied by the potentiometry method and it has been established that the process obeys a first-order equation, and the rate constant has been determined. A possible mechanism for the concentration and reduction of antimony on a modified electrode is proposed. It was established by the method of cyclic voltammetry that the process is adsorption, the diffusion component does not significantly affect the rate of the process. The limiting stage is the process of transfer of the second electron during the reduction of antimony from the complex adsorbed on the electrode. The optimal conditions for the concentration and obtaining of the analytical signal of antimony were selected under the conditions of voltammetry with a linear potential scan: Ee = -0.3 V, electrolysis time 10 - 300 s, the dependence of the peak current on the concentration obeys the equation I = 0.56C + 0.023 (R2 = 0.994). The lower limit of the determined contents is 0.04 yg/dm3. The approbation of the method for determining antimony was carried out on model and natural objects (natural and waste water, acid extracts from the soil). The verification of the correctness of the determination results was carried out by the "entered - found" method and by comparison with the results obtained by the spectrophotometry method. The closeness of the opening ratio to 100% and the absence of significant discrepancies between the results obtained by different methods allow us to conclude that the developed technique can be used in the determination of antimony in natural objects.
Keywords
adsorption voltammetry,
modified electrodes,
antimony,
rhodamine G,
photochemical oxidationAuthors
| Broslavsky Nikolay V. | Tomsk State University | nikolaibroslavskii@mail.ru |
| Baskakova Anastasia S. | Tomsk State University | anastasiabaskakova66@gmail.com |
| Zeifert German O. | Tomsk State University | germangz123@mail.ru |
| Shelkovnikov Vladimir V. | Tomsk State University | shvv@chem.tsu.ru |
Всего: 4
References
Линник П.Н., Набиванец Б.И. Формы миграции металлов в пресных поверхностных водах. Л. : Гидрометеоиздат, 1986. 272 с.
Shotyk W., Krachler M., Chen B. Antimony: global environmental contaminant // Journal of Environmental Monitoring. 2005. Vol. 7 (12). Р. 1135-1136. DOI: 10.1039/B515468P
Huang X., Guan M., Lu Zh., Hang Y. Determination of Trace Antimony (Ш) in Water Samples with Single Drop Microextraction Using BPHA-[C4mim][PF6] System Followed by Graphite Furnace Atomic Absorption Spectrometry // International Journal of Analytical Chemistry. 2018. Art. 8045324. DOI: 10.1155/2018/8045324
Shrivas K., Agrawal K., Harmukh N. On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India //j. Hazard Mater. 2008. Vol. 155 (1-2). Р. 173-178. DOI: 10.1016/j.jhazmat.2007.11.044
Mohammeda E., Mohammeda T., Mohammed A. Optimization of instrument conditions for theanalysis for mercury, arsenic, antimony andselenium by atomic absorption spectroscopy // MethodsX. 2018. Vol. 5. Р. 824-833. DOI: 10.1016/j.mex.2018.07.016
Белозерова А.А., Майорова А.В., Печищева Н.В., Боярникова Н.Г., Шуняев К.Ю. Методика определения мышьяка, сурьмы и висмута в материалах с высоким содержанием вольфрама и меди методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой // Заводская лаборатория. Диагностика материалов. 2016. № 6. С. 10-17. DOI: 10.31857/S0044450220050138
Низамутдинова Н.Р., Сафарова В.И., Хатмуллина Р.М., Тельцова Л.З., Сираева И.Н. Определение селена, мышьяка и сурьмы в образцах растительного происхождения методом ААС-ЭТА // Башкирский химический журнал. 2019. № 1. С. 48-53. DOI: 10.17122/bcj-2019-1-48-53
Брайнина Х.З., Сапожникова Э.Я. Концентрирование веществ в полярографическом анализе. Определение сурьмы с использованием родамина С // Журнал аналитической химии. 1966. № 21 (7). C. 807-812.
Хенце Г. Полярография и вольтамперометрия. Теоретические основы и аналитическая практика / пер. с нем. А. В. Гармаша, А. И. Каменева. М. : БИНОМ. Лаборатория знаний, 2012. 284 с.
Дерябина В.И., Слепченко Г.Б., Щукина Т.И. Применение арилдиазоний тозилатов для поверхностной модификации электродов при определении неорганических элементов методами вольтамперометрии // Современные проблемы науки и образования. 2014. № 1. С. 445-452.
Катенаире Р. Инверсионная вольтамперометрия меди(П), висмута(Ш) и сурьмы(Ш) : автореф. дис.. канд. хим. наук. М., 2004. 19 с.
Huishi G., Pengfeng X., Libo N., Yiheng L., Nongyue H. Determination of trace amount of antimony (III) by adsorption voltammetry on carbon paste electrode //j. Southeast Univ. 2004. Vol. 20 (2). Р. 221-225. DOI: 10.3390/s5040284
Dominguez R.O., Dominguez R.O., Julia Arcos M.M. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes // Anal. Chim. Acta. 2007. Vol. 589, № 2. Р. 255-260. DOI: 10.1016/j.aca.2007.02.069
Pascal S., Gibbon-Walsh K.B., Alves Georgina M.S., Soares Helena M.V.M., Berg Constant M.G. Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode // Anal. Chim. Acta. 2012. Vol. 746. Р. 53-62. DOI: 10.1016/j.aca.2012.08.013
Liu R., Jun Tan Y., Zhong T., Lei C. Determination of Antimony (Ш) by Differential Pulse Voltammetry Using a Gold Nanoparticle-Ionic Liquid-Graphene-Modified Selenium-Doped Carbon Paste Electrode // Analytical Letters. 2018. Vol. 51 (15). Р. 2351-2361. DOI: 10.1080/00032719.2018.1424174
Sezgin H.V., Gokjel H.I., Dilgin Y. Adsorptive anodic stripping voltammetric determination of antimony (III) on a glassy carbon electrode using rivastigmine as a new chemical receptor // Sensors and Actuators: B Chemical. 2015. Vol. 209. Р. 686-694. DOI: 10.1016/J.SNB.2014.12.029
Hasanin Th., Yamamoto T., Okamoto Y., Ishizaka S., Fujiwara T. A Flow Method for Chemiluminescence Determination of Antimony (III) and Antimony (V) Using a Rhodamine B-Cetyltrimethylammonium Chloride Reversed Micelle System Following On-Line Extraction // Analytical Science. 2016. Vol. 32. Р. 245-250.
Shibaev A.Yu., Shelkovnikov V.V., Novolokov K.Yu., Anishchenko M.V. Potentiometric sensor for chromium (VI) determination // IOP Publishing Conference Series Journal of Physics: Conference Series. 2020. Vol. 1611. Art. 012031. DOI: 10.1088/1742-6596/1611/1/012031
Латышенко К.П., Миронов А.А., Павлюченко И.А. Универсальный алгоритм подготовки проб грунта для опрееления опасных химических веществ // Известия МГТУ «МАМИ». 2014. № 3. С. 70-72.