Aggregation of Al and Al2O3 nanoparticles in the aqueous solutions of low ratio carbon acids
The effect of pH on the acid-base state, dispersion and electrokinetic properties of Al (143 nm) and Al2O3 (221 nm) nanoparticles has been shown in this paper. Based on the of pH-metering and the method of Gamete indicators adsorption, it was assumed that in the range ofpH=6...8, an increase in adsorption activity for Al and Al2O3 nanoparticles would be more significant passing from the acidic to basic pH region, respectively. Using the method of dynamic light scattering, it was shown that in aqueous solutions of low molecular weight carboxylic acids' sodium salts the size of Al nanoparticles decreased by 25% compared to 45% for Al2O3 nanoparticles, although Al suspensions were more stable than Al2O3. It was shown for Al nanoparticles, that the aggregative stability decreased, and the colloidal stability was increased with the pH growth and with an increase in the basicity of acids. For example, at thepH=6, the size of Al aggregates was 231...200...179 nm, and the zetapotential was -1...-7...-14 mV, respectively, in solutions of "acetic...oxalic...citric acid". The effect ofpH for Al2O3 nanoparticles was less explicit compared to Al.
Keywords
aluminum nanoparticles,
carboxylic acids,
nanoparticle aggregation,
dynamic light scattering,
zeta potentialAuthors
| Godymchuk Anna Yu. | Tomsk Polytechnic University | godymchuk@tpu.ru |
| Papina Iuliia V. | National Central University | papinayuliya@gmail.com |
| Karakchieva Natalia I. | Tomsk State University | karakchieva@mail.tsu.ru |
| Kuznetsov Denis V. | National University of Science and Technology "MISiS" | dk@misis.ru |
Всего: 4
References
Cerbelaud M., Videcoq A., Rossignol F., Piechowiak M.A., Bochicchio D., Ferrando R. Heteroaggregation of ceramic colloids in suspensions // Advances in Physics. 2016. Vol. 2 (1). Р. 35-53.
Sharma S., Jaiswal S., Duffy B., Jaiswal A. Nanostructured materials for food applications: spectroscopy, microscopy and physical properties // Bioengineering. 2019. Vol. 6 (1). Р. 26.
Sharma S., Parveen R., Chatteiji B.P. Toxicology of nanoparticles in drug delivery // Current Pathobiology Reports. 2021. DOI: 10.1007/s40139-021-00227-z
Pereira F.F., Ferreira M.D., Jonsson C.M., de Jesus K.R., de Castro V.L., Correa D.S. Toxicity of engineered nanostructures in aquatic environments // Nanotoxicology and Nanoecotoxicology. 2021. Vol. 1. Р. 171-202.
Buffle J. The key role of environmental colloids of nanoparticles for sustainability of life // Environment and Chemistry. 2006. Vol. 3. Р. 155-158.
Hidber P.C., Graule T.J., Gauckler L.J. Citric acid - a dispersant for aqueous alumina suspensions // Journal of American Ceramic Society. 1996. Vol. 79 (7). Р. 1857-1867.
Fukuoka A., Dhepe P.L. Sustainable green catalysis by supported metal nanoparticles // The Chemical Record. 2009. Vol. 9. Р. 224-235.
Ghosh S.K. Spectroscopic evaluation of 4-(dimethylamino)pyridine versus citrate as stabilizing ligand for gold nanoparticles // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. Vol. 371. Р. 98-103.
Hidber P.C., Graule T.J., Gauckler L.J. Citric acid - a dispersant for aqueous alumina suspensions // Journal of American Ceramic Society. 1996. Vol. 79 (7). Р. 1857-1867.
Ершов Б.Г. Наночастицы металлов в водных растворах: электронные, оптические и каталитические свойства // Российский химический журнал. 2001. № 45 (3). С. 20-30.
Karepina E., Godymchuk A., Kuznetsov D., Senatova S., Umrikhina M. Irreversible and reversible aggregation of nanoparticles in physiological solutions // Abstracts of the 2nd International School-Conference «Applied Nanotechnology & Nanotoxicology», Lystvyanka, Russia, August 15-19, 2013. Novosibirsk : Boreskov Institute of Catalysis SB RAS, 2013. Р. 126-127.
Prathna T.C., Chandrasekaran N., Mukherjee A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalization and matrix composition // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011. Vol. 390. Р. 216-224.
Киселев А.В. Межмолекулярные взаимодействия в адсорбции и хроматографии. М. : Высшая школа, 1986. 360 с.
Godymchuk A., Papina I., Karepina E., Kuznetsov D., Lapin I., Svetlichnyi V. Agglomeration of iron oxide nanoparticles: pH effect is stronger than amino acid acidity // Journal of Nanoparticle Research. 2019. Vol. 201 (10). Р. 208.
Минакова Т.С. Адсорбционные процессы на границе раздела фаз. Томск : Изд-во Том ун-та, 2007. 284 с.
Годымчук А.Ю., Ан В.В., Ильин А.П. Формирование пористых структур оксида-гидроксида алюминия при взаимодействии нанопорошков алюминия с водой // Физика и химия обработки материалов. 2005. № 5. С. 69-73.
Тихонов Н.В. Аналитическая химия алюминия. М. : Наука, 1971. 268 с.
Соколова Т.А., Трофимов С.Я. Сорбционные свойства почв. Адсорбция. Катионный обмен. Тула : Гриф и К, 2009. 172 с.