Sol-gel synthesis of transparent conductive ZnO films from zinc salicylate solution | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 25. DOI: 10.17223/24135542/25/1

Sol-gel synthesis of transparent conductive ZnO films from zinc salicylate solution

The development of low temperatures sol-gel methods for producing thin oxide films contributes to the development of the direction of creating photocells based on zinc oxide applied not only to glass, but also to transparent heat-resistant polymeric materials to create flexible solar cells. This work is devoted to the low-temperature preparation of zinc oxide films from a film-forming solution (FFS) based on zinc salicylate. By viscometry and IR spectroscopy it was established that the FFS contains ZnSal2 and the solution is suitable for obtaining films with stable properties within a day from the day of its preparation. Thermal destruction of FFS proceeds in three stages and ends at a temperature of 350°C with the formation of zinc oxide with the wurtzite crystal structure. An increase in the annealing time of the films from 24 to 48 hours makes it possible to form a more crystalline structure of the oxide, which leads to an increase in the conductivity of the thin-film material on both silicon and glass substrates while maintaining the transparency coefficient in the visible region of the spectrum (75-78%). An increase in the thickness of ZnO films leads to a violation of their continuity (two and three-layer films contain dendro-like macro defects-cracks) and a decrease in resistance, as well as to a decrease in their transparency (T = 60%). Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 42

Keywords

film-forming solution, zinc salicylate, zinc oxide, thin films, solar cells

Authors

NameOrganizationE-mail
Kuznetsova Svetlana A.Tomsk State Universityonm@chem.tsu.ru
Khalipova Olga S.Tomsk State Universitychalipova@mail.ru
Pak Evgeniya V.Tomsk State Universitygemmei@yandex.ru
Malchik Alexandra G.Tomsk Polytechnic Universityale-malchik@yandex.ru
Всего: 4

References

Ziyao Zh., Zhongming D., Xiangxin L., Yufeng Zh., Qiuchen W., Xinlu L. Mechanism of chlorine treatment in the resistivity stabilization of highperformance // Ceramics International. 2020. Vol. 46. Р. 20819-20829.
Tsukazaki A., Ohtomo A., Onuma T., Ohtani M., Makino T., Sumiya M., Ohtani K., Chichibu Sh.F., Fuke S.; Segawa Y., Ohno H., Koinuma H., Kawasaki M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO // Nature materials. 2005. Vol. 4 (1). Р. 42-46.
Ryu Y., Lee T.-S., Lubguban J.A., White H.W., Kim B.-J., Park Y.-S., Youn Ch.-J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes // Applied Physics Letters. 2006. Vol. 88 (24). Art. 241108.
Hussain B., Ebong A., Ferguson I. Zinc oxide and silicon based heterojunction solar cell model // IEEE 42nd Photovoltaic Specialist Conference (PVSC). 2015. Р. 1-4.
Laurenti M., Cauda V. Porous zinc oxide thin films: Synthesis approaches and applications // Coatings. 2018. Vol. 8 (67). Р. 1-24.
Novak Р. Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode // Phys. Status Solidi A. 2019. Vol. 216 (7). Art. 1800814.
Жирнов А.Е., Аржаков М.С. Структура полимеров. М., 2013. 41 с. URL: http://vmsmsu.ru/structure.pdf (дата обращения: 13.12.2021).
Михайлин Ю.А. Термоустойчивые полимеры и полимерные материалы. СПб. : Про фессия, 2006. 624 с.
Зандберг Э.Я., Нездюров А.Л., Палеев В.И., Пономарев Д.А. Поверхностная иониза ция ароматических углеводородов // Теоретическая и экспериментальная химия. 1988. Т. 24, № 6. С. 733-778.
Монгуш Е.Э., Кузнецова С.А. Получение и свойства пленкообразующих растворов на основе нитрата цинка, тетраэтоксисилана и салициловой кислоты // Ш Байкальский материаловедческий форум : материалы Всерос. науч. конф. с междунар. участием. Улан-Удэ : Изд-во БНЦ СО РАН, 2018. Вып. 2. С. 92.
Kuznetsova S.A., Mal’chik A.G., Kozik V.V. Properties of ZnO:Al, ZnO:Al-SiO2 Films Obtained in Sol Gel Process from Coating Solutions // Russian Physics Journal. 2020. Vol. 63 (4). Р. 591-598.
Борило Л.П. Тонкопленочные неорганические наносистемы / под ред. В.В. Козика. Томск : Том. гос. ун-т, 2012. 134 с.
Колесник И.В., Саполетова Н.А. Инфракрасная спектроскопия : метод. разработка. М. : МГУ им. М.В. Ломоносова, 2011. 88 с.
Фиалко М.Б. Неизотермическая кинетика в термическом анализе. Томск : Изд-во Том. ун-та, 1981. 110 с.
Baydogan N., Ozdurmusoglu T., Cimenoglu H. Refractive Index and Extinction Coefficient of ZnO:Al Thin Films Derived by Sol-Gel Dip Coating Technique // Defect and Diffusion Forum. 2013. Vol. 290. Р. 334-335.
Rembeza S.I., Prosvetov R.E., Rembeza E.S., Vinokurov A.A., Makagonov V.A., Agapov B.L. Influence of Al impurities on the electrical properties of ZnO films // Letters on Materials. 2019. Vol. 9 (3). Р. 288-293.
 Sol-gel synthesis of transparent conductive ZnO films from zinc salicylate solution | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 25. DOI: 10.17223/24135542/25/1

Sol-gel synthesis of transparent conductive ZnO films from zinc salicylate solution | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 25. DOI: 10.17223/24135542/25/1

Download full-text version
Counter downloads: 66