Macrophages and anti-tuberculosis immunity (literature review)
This literature review is devoted to the analysis of the role of macrophages and monocytes in the immunopathogenesis of tuberculosis infection. The article summarizes information about the origin of macrophages and monocytes, their phenotypic and functional heterogeneity. The mechanisms of impaired protective function of innate immunity are associated with the polarization of the program of maturation and activation of macrophages in the direction to tolerogenic or immunoregulatory cells with phenotype of M2. Alveolar macrophages perform a variety of functions (from proinflammatory to regenerative) in the development of inflammation in the respiratory organs. Their inherent plasticity suggests that the same macrophages can change their phenotype and function depending on the microenvironment in the inflammatory focus at different stages of the disease. Understanding the mechanisms that regulate macrophage plasticity will be an important step towards realizing the potential of personalized immunomodulatory therapy. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.
Keywords
macrophages,
monocytes,
alveolar macrophages,
lung diseases,
innate immunity,
immune responseAuthors
| Churina Elena G. | Tomsk State University; Siberian State Medical University | lena1236@yandex.ru |
| Popova Angelica V. | Siberian State Medical University | anjelika.sitnikova@yandex.ru |
| Urazova Olga I. | Siberian State Medical University | urazova 72@yandex.ru |
| Kononova Tatiana E. | Siberian State Medical University | kononova.te@gmail.com |
| Voronova Gulnara A. | Tomsk State University | gulnara.voronova@mail.tsu.ru |
Всего: 5
References
Weiss G., Schaible U.E. Macrophage defense mechanisms against intracellular bacteria // Immunol Rev. 2015. Vol. 264, № 1. P 182-203.
Davies L.C., Taylor P.R. Tissue-resident macrophages: then and now // Immunology. 2015. Vol. 144, № 4. P. 541-548.
Mills C.D. Anatomy of a discovery: m1 and m2 macrophages // Front Immunol. 2015. Vol. 6. P. 212.
Khan A., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis //j. Leukoc. Biol. 2019. Vol. 106, № 2. P. 275-282.
Wynn T.A., Vannella K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis // Immunity. 2016. Vol. 44, № 3. P. 450-462.
Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure // Science. 2013. Vol. 339, № 6116. P. 161-166.
Possamai L.A., Thursz M.R., Wendon J.A., Antoniades C.G. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure //j. Hepatol. 2014. Vol. 61, № 2. P. 439-445.
Global tuberculosis report : World Health Organization Report. Geneva, 2018. URL: https://apps.who.int/iris/handle/10665/274453
Global tuberculosis report : World Health Organization Report. Geneva, 2019. URL: https://www.who.int/teams/globaltuberculosis-programme/tb-reports/global-report-2019
Wager L., Arnett E., Schlesinger L.S. Macrophage nuclear receptors: Emerging key players in infectious diseases // PLoS Pathog. 2019. Vol. 15, № 3. e1007585.
Santos J.H.A., Buhrer-Sekula S., Melo G.C. et al. Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile // Rev. Soc. Bras Med. 2019. Vol. 52. e20190315.
Zhai W., Wu F., Zhang Y. et al. The Immune Escape Mechanisms of Mycobacterium Tuberculosis // Int. J. Mol. Sci. 2019. Vol. 20, № 2. P. 340.
Shim D., Kim H., Shin S.J. Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy // Front Immunol. 2020. Vol. 11. P. 910.
Maler M.D., Nielsen P.J., Stichling N. et al. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages // m. Bio. 2017. Vol. 8, № 5. e01445-17.
PrabhuDas M.R., Baldwin C.L., Bollyky P.L. et al. A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease //j. Immunol. 2017. Vol. 198, № 10. P. 3775-3789.
Wong C.K., Smith C.A., Sakamoto K. et al. Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice //j. Immunol. 2017. Vol. 199, № 3. P. 1060-1068.
Barber D.L., Mayer-Barber K.D., Antonelli L.R. et al. Th1-driven immune reconstitution disease in Mycobacterium avium-infected mice // Blood. 2010. Vol. 116, № 18. P. 3485-3493.
Zhu H., Wang G., Zhou X. et al. miR-1299 suppresses cell proliferation of hepatocellular carcinoma (HCC) by targeting CDK6 // Biomed Pharmacother. 2016. Vol. 83. P. 792-797.
Gleeson L.E., Sheedy F.J., Palsson-McDermott E.M. et al. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication //j. Immunol. 2016. Vol. 196, № 6. P. 2444-2449.
Mihara M., Hashizume M., Yoshida H. et al. IL-6/IL-6 receptor system and its role in physiological and pathological conditions // Clin. Sci. (London). 2012. Vol. 122, № 4. P. 143-159.
Gupta A., Kaul A., Tsolaki A.G. et al. Mycobacterium tuberculosis: immune evasion, latency and reactivation // Immunobiology. 2012. Vol. 217, № 3. P. 363-374.
Kumar R., Loughland J.R., Ng S.S. et al. The regulation of CD4+ T-cells during malaria // Immunol. Rev. 2020. Vol. 293, № 1. P. 70-87.
Morikawa M., Derynck R., Miyazono K. TGF-P and the TGF-P Family: Context-Dependent Roles in Cell and Tissue Physiology // Cold Spring 1Harb Perspect. Biol. 2016. Vol. 8, № 5. a021873.
Haque S., Morris J.C. Transforming growth factor-P: A therapeutic target for cancer // Hum. Vaccin. Immunother. 2017. Vol. 13, № 8. P. 1741-1750.
Zhang J., Li H., Yi D. et al. Knockdown of vascular cell adhesion molecule 1 impedes transforming growth factor beta 1-mediated proliferation, migration, and invasion of endometriotic cyst stromal cells // Reprod. Biol. Endocrinol. 2019. Vol. 17, № 1. P. 69.
Bose Dasgupta S., Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis // Semin. Immunopathol. 2018. Vol. 40, № 6. P. 577-591.
Upadhyay S., Mittal E., Philips J.A. Tuberculosis and the art of macrophage manipulation // Pathogens and Disease. 2018. Vol. 76, № 4. fty037.
Riabov V., Gudima A., Wang N. et al. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis //j. Front Physiol. 2014. Vol. 5. P. 75.
Murray P.J., Allen J.E., Biswas S.K. et al. Macrophage activation and polarization: nomenclature and experimental guidelines // Immunity. 2014. Vol. 41, № 1. P. 14-20.
Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy // Immunity. 2014. Vol. 41, № 1. P. 49-61.
Ginhoux F., Prinz M. Origin of microglia: current concepts and past controversies // Cold Spring Harb Perspect. Biol. 2015. Vol. 7, № 8. P. 23-41.
Bose Dasgupta S., Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis // Semin. Immunopathol. 2018. Vol. 40, № 6. P. 577-591.
Hmama Z., Peña-Díaz S., Joseph S., Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis // Immunol. Rev. Actions. 2015. Vol. 264, № 1. P. 220-232.
O’Garra A., Redford P.S., McNab F.W. et al. The immune response in tuberculosis // Annu. Rev. Immunol. 2013. Vol. 31. P. 475-527.
Auld S.C., Staitieh B.S. HIV and the tuberculosis "set point": how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease // Retrovirology. 2015. Vol. 17, № 1. P. 32.
Casanova J.L., Abel L., Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics // Annu. Rev. Immunol. 2011. Vol. 29. P. 447-491.
Cohen S.B., Gem B.H., Delahaye J.L. et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination // Cell. Host Microbe. 2018. Vol. 24, № 3. P. 447-491.
Antonelli L.R., Gigliotti Rothfuchs A., Roffe E. et al.Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population //j. Clin. Invest. 2010. Vol. 120. P. 1674-1б82.
Samstein M., Schreiber H.A., Leiner I.M. et al. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming // Immu-nolog. 2013. Vol. 2. e01086.
Casanova J.L., Abel L. Human genetics of infectious diseases: a unified theory // EMBO Journal. 2007. Vol. 26. P. 915-922.
Al-Muhsen S., Casanova J.L. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases //j. Aller Clin. Immunol. 2008. Vol. 122. P. 1043-1051.
Rezaei N., Aghamohammadi A., Mansouri D. et al. Tuberculosis: a new outlook at an old disease // Expert Rev. Clin. Immunol. 2011. Vol. 7, № 2. P. 129-131.
Wolf A.J., Desvignes L., Linas B. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs //j. Exp. Med. 2008. Vol. 205. P. 105-115.
Handzel B.Z.T. The Immune Response to Mycobacterium tuberculosis Infection in Humans Additional information is available at the end of the chapter // Submitted. 2013. URL: http://dx.doi.org/10.5772/54986/
Arshad K., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis //j. Leukoc Biol. 2019. Vol. 106, № 2. P. 275-282.
Refai A., Gritli S., Barbouche M.R., Essafi M. Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype // Front Cell. Infect. Microbiol. 2018. Vol. 8. P. 327.
Simeone R., Bobard A., Lippmann J. et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death // Epub. 2012. Vol. 8, № 2. e1002507.
Van der Wel N., Hava D., Houben D. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells // Cell. 2007. Vol. 129, № 2. P. 1287-1289.
Clifford V., He Y., Zufferey C. et al.Interferon gamma release assays for monitoring the response to treatment for tuberculosis: a systematic review // Tuberculosis (Edinb). 2015. Vol. 95. P. 639-650.
Schenk M., Fabri M., Krutzik S.R. et al.Interleukin-ip triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells // Immunology. 2014. Vol. 141, № 2. P. 174-180.
Mitchell A.J., Roediger B., Weninger W. Monocyte homeostasis and the plasticity of inflammatory monocytes // Cell. Immunol. 2014. Vol. 291, № 1/2. P. 22-31.
Ingersoll M.A., Spanbroek R., Lottaz C. et al.Comparison of gene expression profiles between human and mouse monocyte subsets // Blood. 2010. Vol. 115, № 3. P. e10-e19.
Sampath P., Moideen K., Ranganathan U.D., Bethunaickan R. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection // Front Immunol. 2018. Vol. 9. P. 1726.
Ziegler-Heitbrock L., Ancuta P., Crowe S. et al. Nomenclature of monocytes and dendritic cells in blood // Blood. 2010. Vol. 116, № 16. P. e74-e80.
Gautier E.L., Jakubzick C., Randolph G.J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2009. Vol. 29. P. 1412-1418.
Stansfield B.K., Ingram D.A. Clinical significance of monocyte heterogeneity // Clin. Transl. Med. 2015. Vol. 4, № 5. URL: https://doi.org/10.1186/s40169-014-0040-3/
Skrzeczynska-Moncznik J., Bzowska M., Loseke J. et al. Peripheral blood CD14high CD16 + monocytes are main producers of IL-10 // Scand. J. Immunol. 2008. Vol. 67, № 2. P. 152-159.
Chimen M., Yates C.M., Helen M. et al. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface //j. Immunol. 2017. Vol. 198, № 7. P. 2834-2843.
Carlin L.M., Stamatiades E.G., Auffray C. et al. Nr4a1-dependent ly6c(low) monocytes monitor endotelial cells and orchestrate their disposal // Cell. 2013. Vol. 153, № 2. P. 362-375.
Young D.B., Gideon H.P., Wilkinson R.J. Eliminating latent tuberculosis // Trends Microbiol. 2009. Vol. 17, № 5. P. 183-188.
Franca C.N., Izar M.C.O., Hortencio M.N.S. et al. Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease // Clin. Sci. (London). 2017. ol. 131, № 12. P. 1215-1224.
Shahid F., Lip G.Y.H., Shantsila E. Role of Monocytes in Heart Failure and Atrial Fibrillation //j. Am Heart Assoc. 2018. Vol. 7, № 3. e007849.
Balboa L., Romero M.M., Laborde E. et al. Impaired dendritic cell differentiation of CD16positive monocytes in tuberculosis: role of p38 MAPK // Eur. J. Immunol. 2013. Vol. 43, № 2. P. 335-347.
Castano D., Garcia L.F., Rojas M. Increased frequency and cell death of CD16+ monocytes with Mycobacterium tuberculosis infection / Tuberculosis (Edinburgh). 2011. Vol. 91, № 5. P. 348-360.
Balboa L., Barrios-Payan J., Gonzalez-Dominguez E. et al. Diverging biological roles among human monocyte subsets in the context of tuberculosis infection / // Clin Sci (London). 2015. Vol. 129, № 4. P. 319-330.
Lastrucci C., Benard A., Balboa L. et al. Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis // Cell. Res. 2015. Vol. 25, № 12. P. 1333-1351.
Funes S.C., Rios M., Escobar-Vera J., Kalergis A.M. Implications of macrophage polarization in autoimmunity // Immunology. 2018. Vol. 154, № 2. P. 186-195.
Dudley C. Anatomy of a discovery: m1 and m2 macrophages // Front Immunol. 2015. Vol. 6. P. 212.
Cassetta L., Fragkogianni S., Sims A.H. et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets // Cancer Cell. 2019. Vol. 35, № 4. P. 588-602.
Podinovskaia M., Lee W., Caldwell S., Russell D.G. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function // Cell. Microbiol. 2013. Vol. 15, № 6. P. 843-859.
Shapouri-Moghaddam A., Mohammadian S., Vazini H. et al. Macrophage plasticity, polarization, and function in health and disease //j. Cell. Physiol. 2018. Vol. 233, № 9. P. 6425-6440.
Trugal D., Liao X., Jain M.K. Transcriptional control of macrophage polarization // AtertioThrombVasc. Biol. 2013. Vol. 33, № 6. P. 1135-1144.
Zhou D., Huang C., Lin Z. et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways // Cell. Signal. 2014. Vol. 26, № 2. P. 192-197.
Krausgruber T., Blazek K., Smallie T., Alzabin S. et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses // Nat. Immunol. 2011. Vol. 12. P 231238.
Gabrilovich, D.I. Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours // Nat. Rev. Immunol. 2012. Vol. 12, № 4. P. 253.
Benoit M., Desnues B., Mege J.L. Macrophage polarization in bacterial infections //j. Immunol. 2008. Vol. 181, № 6. P. 3733-3739.
Dominguez-Soto A., Usategui A., de las Casas-Engel M. et al. Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis // Sci. Rep. 2017. Vol. 7. P. 1-15.
Lugo-Villarino G., Verollet C., Maridonneau-Parini I., Neyrolles O. Macrophage polarization: convergence point targeted by mycobacterium tuberculosis and HIV // Front Immunol. 2011. Vol. 2. P. 43.
Dorhoi A., Reece S.T., Kaufmann S.H. For better or for worse: the immune response against mycobacterium tuberculosis balances pathology and protection // Immunol. Rev. 2011. Vol. 240, № 1. P. 235-251.
Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm // Nat. Immunol. 2010. Vol. 11, № 10. P. 889-896.
Bacher P., Scheffold A. Flow-cytometric analysis of rare antigen-specific T-cells // Cytometry A. 2013. Vol. 83, № 8. P. 692-701.
Cadena A.M., Flynn J.L., Fortune S.M. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome // MBio. 2016. Vol. 7, № 2. e00342-16.
Ahluwalia P.K., Pandey R.K., Sehajpal P.K., Prajapati V.K. Perturbed micro RNA expression by Mycobacterium tuberculosis promotes macrophage polarization leading to prosurvival foam cell // Front Immunol. 2017. Vol. 8. P. 107.
Martinez F.O., Gordon S., Locati M., Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression //j. Immunol. 2006. Vol. 177, № 10. P. 7303-7311.
Van Rhijn I., Moody D.B. CD1 and mycobacterial lipids activate human T cells // Immunol. Rev. 2015. Vol. 264. P.138-153.
Laskin D.L., Sunil V.R., Gardner C.R., Laskin J.D. Macrophages and tissue injury: agents of defense or destruction? // Annu Rev. Pharmacol. Toxicol. 2011. Vol. 51. P. 267-288.
Haribhai D., Ziegelbauer J., Jia S. et al. Alternatively activated macrophages boost iTreg and Th17 cell responses during immunotherapy for colitis //j. Immunol. 2016. Vol. 196, № 8. P. 3305- 3317.
Ferrante C.J., Pinhal-Enfield G., Elson G. et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor a (IL-4Ra) signaling // Inflammation. 2013. Vol. 36, № 4. P. 921-931.
Martinez F.O., Helming L., Gordon S. Alternative activation of macrophages: an immunologic functional perspective // Annu Rev. Immunol. 2009. Vol. 27. P. 451-483.
Duque-Correa M.A., Kuhl A.A., Rodriguez P.C. et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, № 38. P. E4024-E4032.
Gold M.C., Napier R.J., Lewinsohn D.M. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis // Immunol. Rev. 2015. Vol. 264, № 1. P. 154-166.
Sica A., Erreni M., Allavena P., Porta C. Macrophage polarization in pathology // Cell. Mol. Life Sci. 2015. Vol. 72, № 1. P. 4111-4126.
McClean C.M., Tobin D.M. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases // Pathog. Dis. 2016. Vol. 74, № 7. ftw068.
Miranda M.S., Breiman A., Allain S. et al. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? // Clin. Dev. Immunol. 2012. Vol. 2012. Art. 139127.
Nigsch A., Glawischnig W., Bago Z., Greber N. Mycobacterium caprae Infection of Red Deer in Western Austria-Optimized Use of Pathology Data to Infer Infection Dynamics // Front Vet. Sci. 2018. Vol. 5. P. 530.
Guilliams M., De Kleer I., Set H. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF //j. Exp. Med. 2013. Vol. 210. P. 1977-1992.
Perdiguero E.G., Klapproth K., Schulz C. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors // Nature. 2015. Vol. 518. P. 547-551.
Tan S.Y., Krasnow M.A. Developmental origin of lung macrophage diversity // Development. 2016. Vol. 143, № 8. P. 1318-1327.
Gibbings S.L., Thomas S.M., Atif S.M. et al. Three Unique Interstitial Macrophages in the Murine Lung at Steady State // Am J. Respir. Cell. Mol. Biol. 2017. Vol. 57, № 1. P. 66-76.
Srivastava S., Ernst J.D., Desvignes L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis // Immunol Rev. 2014. Vol. 262, № 1. P. 179-192.
Huang L., Nazarova E.V., Tan S. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny //j. Exp. Med. 2018. Vol. 15, № 4. P. 1135-1152.
Zhang X., Mosser D.M. Macrophage activation by endogenous danger signals //j. Pathol. 2008. Vol. 214. P. 161-178.
Rajaram M.V.S., Arnett E., Azad A.K. et al. M. tuberculosis-initiated human mannose receptor signaling regulates macrophage recognition and vesicle trafficking by FcRgamma-chain, Grb2, and SHP-1 // Cell. Rep. 2017. Vol. 21. P. 126-140.
Allard B., Panariti A., Martin J.G. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection // Front Immunol. 2018. Vol. 9. P. 1777.
Akila P., Prashant V., Suma M.N. et al. CD163 and its expanding functional repertoire // Clin. Chim. Acta. 2012. Vol. 13, № 7/8. P. 669-674.
Martinez-Pomares L. The mannose receptor //j. Leukoc. Biol. 2012. Vol. 92, № 6. P. 1177-1186.
Kaku Y., Imaoka H., Morimatsu Y. et al. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease // PLoS One. 2014. Vol. 9, № 1. e87400.
Parker D. A live vaccine to Staphylococcus aureus infection // Virulence. 2018. Vol. 9, № 1. P. 700-702.
Anzai A., Anzai T., Nagai S. et al. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling // Circulation. 2012. Vol. 125, № 10. P. 1234-1245.
Landis R.C., Quimby K.R., Greenidge A.R. M1/M2 Macrophages in Diabetic Nephropathy: Nrf2/HO-1 as Therapeutic Targets // Curr. Pharm. Des. 2018. Vol. 24, № 20. P. 2241-2249.