New highly selective and sensitive extraction-photometric method for the determination of nickel | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 28. DOI: 10.17223/24135542/28/1

New highly selective and sensitive extraction-photometric method for the determination of nickel

The interaction of nickel with azomercaptophenols (AMP, H2L) {1-(2-pyridylazo)-2-hydroxy-4-mercaptophenol (PHMP), 1-(5-chloro-2-pyridylazo)-2-hydroxy-4-mercaptophenol (CHPMP), 1 -(5-bromo-2-pyridyl-azo)-2-hydroxy-4-mercaptophenol (BPGMF), 1-(5-iodo-2-pyridylazo)-2-hydroxy-4-mercaptophenol (IPGMP)} in the presence of aminophenols (AF): 2-(N,N-dimethylaminomethyl)-4-methylphenol (AFi), 2-(N,N-dimethylaminomethyl)-4-chlorophenol (AF2). The synthesized compounds (PHMP, HPMP) were characterized by IR and NMR spectroscopy. AMP - yellow-green crystalline substances, poorly soluble in water, in acids, partially soluble in alkalis, acetone, well soluble in chloroform. Depending on the acidity of the medium, AMP can exist in the form of three forms: H2R, HR-, HR2-. AMP and its derivatives form colored complexes with nickel, which are in soluble in nonpolar organic solvents. The charge of the complexes was established by the method of electro-migration of ions and by the method of electrophoresis. Colored complexes are anions. When amines are introduced into the system, the transition of anionic complexes to the organic phase in the form of a mixed ligand complex (RLC) is observed. The best extractants were chloroform, dichloroethane and carbon tetrachloride. A single extraction with chloroform yields 97.1-98.9% nickel(II) in the form of RLA. The optimal range of acidity, at which the optical density is maximum and constant, is at pHop. 2.4-6.5 (pNob. 0.7-8.4). RLC Ni(II) with AMP and AF are stable in aqueous and organic solvents and do not decompose for three days, and after extraction for more than a month. The maximum optical density is reached within 8-12 minutes. The optimal condition for the formation and extraction of these compounds is (1,12-2,34) х 10 3mol/l concentration of AMP and (6.3-8.4)x10-4mol/l - AF. An increase in the aqueous phase by 20 times relative to the organic phase does not affect the completeness of the extraction. The maximum analytical signal during the complex formation of nickel with AMP and AF is noticeable at 605-648 nm. AMP is maximally absorbed at 515-530 nm. During complex formation, a bathochromic shift of the light absorption maximum by 110-118 nm is observed. The stoichiometry of the studied complexes was established by the methods of equilibrium shift and relative yield. In the composition of RLC, 1 mole of nickel accounts for 2 moles of AMP and AF. It was established by the Nazarenko method that the complexing form of nickel is Ni2+. In this case, the number of protons displaced by it from one H2L molecule turned out to be equal to 2. The performed calculations showed that the RLC in the organic phase do not polymerize and are in the monomeric form (γ=0.94-1.07). A thermogravimetric study of the [Ni(PHMP)2](AP2)2 complex showed that its thermal decomposition proceeds in three stages: at 60-120°C water escapes (mass loss - 2.14%), at 340-390°C decomposes AP (mass loss 38.48%), and at 490-510°C, PHMP decomposes (mass loss 59.45%). The end product of the thermolysis of the complex is NiO. RLC Ni(II) extracts obey the basic law of light absorption at concentrations of 0.518 pg/mL. The determination of Ni(II) with AMP and AF is not interfered with by ions of alkaline, alkaline earth elements and REE. The interfering effect of ions is eliminated by changing the pH of the medium, using masking agents and using extraction. Comparison of the analytical capabilities of the studied reagents and hydrophobic amines shows that the contrast and sensitivity of the reaction decreases in the series CPGMP -BPGMP - IPPGMP - PHMP. The results of studies on the formation and extraction of RLA Ni(II) with AMP and AF, the physicochemical and analytical characteristics of these compounds served as the basis for the development of new methods for the extraction-photometric determination of Ni(II) in various natural materials. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 22

Keywords

spectrophotometric method, azomercaptophenol, aminophenol, extractant, analytical signal, complexation

Authors

NameOrganizationE-mail
Zalov Ali Z.Azerbaijan State Pedagogical Universityzalov1966@mail.ru
Kuliev Kerim A.Azerbaijan State Pedagogical Universitykerim.kuliev.69@mail.ru
Akberov Nizami A.Azerbaijan State Pedagogical Universityadpu-kimya@mail.ru
Askerova Zohra G.Azerbaijan State Pedagogical Universityphd.zohra@gmail.com
Всего: 4

References

Влияние различных химических веществ, содержащихся в воде, на живые организмы и человека. URL: http://asdemo.iatp.by/ecologie_6.html
Умланд Ф., Янсен А., Тириг Д., Вюнш Г. Комплексные соединения в аналитической химии. М. : Мир, 1975. 531 с.
Бабко А.К. О реакции иона никеля с диметилглиоксимом в присутствии окислителей // Журнал аналитической химии. 1948. Т. 3. С. 284.
Пешкова В.М., Савостина В.М. Аналитическая химия никеля. М. : Наука, 1966. 204 с.
Zalov A.Z., Gavazov K.B. Extractive Spectrophotometric Determination of Nickel with 2-hydroxy-5-iodothiophenol and Diphenylguanidine // Chemistry Journal. 2014. Vol. 4 (5). P. 20-25.
Aliyev S.G., Ismailova R.A., Suleymanova E.I., Magarramova L.M., Sultanzadeh S.S., Asgerova Z.G., Zalov A.Z. Spectrophotometric investigation of complex formation of nickel (II) with 2-hydroxy-5-nitrothiophenol and aminophenols // International Journal of Innovative Science, Engineering & Technology. 2018. Vol. 5 (3). P. 192-206.
Kuliev K.A. Spectrophotometric study of nickel(II) complexes with 2,6-dithiol-4-ethylphenol and heterocyclic diamines // International Congress on Heterocyclic Chemistry “Kost-2015” : book of abstracts. Moscow, 2015. P. 457.
Коростелев П.П. Приготовление растворов для химико-аналитических работ. М. : Издво АН СССР, 1964. 401 с.
Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений. М. : Высшая школа,1984. 336 с.
Анисимова Н.А. Идентификация органических соединений. Горно-Алтайск : РИО Горно-Алт. гос. ун-та, 2009. 118 с.
Булатов М.И., Калинкин И.П. Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа. Л. : Химия, Ленингр. отд-ние, 1986. 432 с.
Назаренко В.А., Бирюк Е.А. Исследование химизма реакций ионов многовалентных элементов с органическими реагентами // Журнал аналитической химии. 1967. Т. 22 (1). С. 57-64.
Ахмедли М.К., Клыгин А.Е., Иванова Л.И., Баширов Э.А. О химизме взаимодействия ионов галлия с некоторыми сульфофталеинами // Журнал неорганической химии. 1974. Т. 19 (8). С. 2007-2012.
Дорохова Е.Н., Прохорова Г.В. Аналитическая химия (физико-химические методы анализа). М. : Высшая школа, 1991. 250 с.
Yoshikuni N., Baba T., Tsunoda N., Oguma K. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel // Talanta. 2005. Vol. 66 (1). P. 40-44.
Ramachandraiah C., Kumar J.R., Reddy K.J. et. al. Development of a highlysensitive extractive spectrophotometric method for the determination of nickel(II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone // J Environ Manage. 2008. Vol. 88 (4). P. 729-736.
Jadhav V.A., Kulkarni M.U. 7-Methl-2-chloroquinoline-3-carbaldehyde thiosemicarbazone as analytical reagent for copper, cobalt and nickel (II) //j. Indian Chem Soc. 1992. Vol. 69. P. 287-288.
Otomo M., Watanabe T., Moriya M. Solvent Extraction and Spectrophotometric Determination of Nickel (II) with Thiazole-2-carbaldehyde 2-Quinolylhydrazone // Analytical Sciences. 1986. Vol. 2 (6). P. 549-552.
Sarma L.S., Kumar J.R., Reddy K.J. et al. Development of highly sensitive extractive spectrophotometric determination of nickel (II) in medicinal leaves, soil, industrial effluxentsand standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone // Journal of Trace Elements in Medicine and Biology. 2008. Vol. 22. P. 285-295.
Rekha D., Kumar J.D., Jayaraj B. et al. Nickel (II) Determination by Spectrophotometry Coupled with Preconcentration Technique in Water and Alloy Samples // Bull. Korean Chem. Soc. 2007. Vol. 28 (3). P. 373-378.
Минеев В.Г., Сычев В.Г., Амельянчик O.A., Болышева Т.Н., Гомонова Н.Ф., Дурынина Е.П., Егоров B.C., Егорова Е.В., Едемская Н.Л., Карпова Е.А., Прижукова В.Г. Практикум по агрохимии : учеб. пособие. 2-е изд., перераб. и доп. / под ред. В.Г. Минеева. M. : Изд-во МГУ, 2001. 689 с
 New highly selective and sensitive extraction-photometric method for the determination of nickel | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 28. DOI: 10.17223/24135542/28/1

New highly selective and sensitive extraction-photometric method for the determination of nickel | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 28. DOI: 10.17223/24135542/28/1

Download full-text version
Counter downloads: 90