Synthesis of AI2O3-Y2O3 Powders from Suspensions with a Spray Drying Technique | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 28. DOI: 10.17223/24135542/28/4

Synthesis of AI2O3-Y2O3 Powders from Suspensions with a Spray Drying Technique

This work shows the possibility of obtaining AI2O3-Y2O3 powders synthesized by nano spray drying. The different methods like thermogravimetry, differential scanning calorimetry, X-ray analysis, BET and scanning electron microscopy were used to investigate the obtained powders. The processes of linear shrinkage of samples during thermal and compression consolidation were studied with the use of spark plasma sintering technology. A comparative analysis of powders obtained with the use nanospray drying technique and reverse co-precipitation deposition was carried out. The results showed that the powder with content of 96 vol.% Y3AI5O12 can be obtained by nanospray drying technique by calcining the precursor at a temperature of 1100 °C for 10 minutes. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 21

Keywords

chemical synthesis, nanospray drying, reverse co-precipitation, thermogravimetric analysis, spark plasma sintering

Authors

NameOrganizationE-mail
Paygin Vladimir D.Tomsk Polytechnic Universityvpaygin@mail.ru
Deulina Daria E.Tomsk Polytechnic Universityded5@tpu.ru
Ilela Alfa E.Tomsk Polytechnic Universityalfaedison@mail.ru
Lyamina Galina V.Tomsk Polytechnic Universitylyamina@tpu.ru
Dvilis Edgar S.Tomsk Polytechnic Universitydvilis@tpu.ru
Valiev Damir T.Tomsk Polytechnic Universityrubinfc@tpu.ru
Stepanov Sergei A.Tomsk Polytechnic Universitystepanovsa@tpu.ru
Khasanov Oleg L.Tomsk Polytechnic Universitykhasanov@tpu.ru
Ditts Alexander A.Tomsk Polytechnic Universityditts@tpu.ru
Всего: 9

References

Abell J.S., Harris I.R., Cockayne B., Lent B. An investigation of phase stability in the Y2O3- AI2O3 system // Journal of Materials Science. 1974. Vol. 9 (4). Р. 527-537.
Rahmani M., Mirzaee O., Tajally M., Loghman-Estarki M.R.Comparison of synthesis and spark plasma sintering of YAG nano particles by variation of pH and precipitator agent // Ceramics International. 2018. Vol. 44 (18). Р. 23215-23225.
Yoder H.S., Keith M.L.Complete substitution of aluminum for silicon: The system 3MnO- AkO3-3SiO23Y2O3-5AkO3 // American Mineralogist: Journal of Earth and Planetary Materials. 1951. Vol. 36 (7-8). Р. 519-533.
Li X., Li J.G., Xiu Z., Huo D., Sun X. Transparent Nd: YAG Ceramics Fabricated Using Nanosized y-Alumina and Yttria Powders // Journal of the American Ceramic Society. 2009. Vol. 92 (1). Р. 241-244.
Geller S., Wood E.A. Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3 // Acta Crystallographica. 1956. Vol. 9 (7). Р. 563-568.
Kinsman K.M., Mc Kittrick J., Sluzky E., Hesse K. Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG: Cr) phosphors // Journal of the American Ceramic Society. 1994. Vol. 77 (11). Р. 2866-2872.
Sim S.M., Keller K.A., Mah T.I. Phase formation in yttrium-aluminum garnet powders syn thesized by chemical methods // Journal of Materials Science. 2000. Vol. 35(3). Р. 713-717.
Xiao Z., Yu S., Li Y., Ruan S., Kong L.B., Huang Q., Tang D. Materials development and potential applications of transparent ceramics : a review // Materials Science and Engineering: R: Reports. 2020. Vol. 139. Art. 100518.
Малявин Ф. Ф., Кравцов А. А., Тарала В. А., Никова М.С., Чикулина И. С., Вакалов Д. С., Медяник Е.В. Исследование влияния концентрации оксида магния и отклонения от стехиометрии иттрий-алюминиевого граната на микроструктуру и оптическое пропускание керамики на его основе // Научно-технический вестник информационных технологий, механики и оптики. 2020. № 21 (6). С. 872-879.
Liu Q., Liu J., Li J., Ivanov M., Medvedev A., Zeng Y., Guo J. Solid-state reactive sintering of YAG transparent ceramics for optical applications // Journal of Alloys and Compounds. 2014. Vol. 616. Р. 81-88.
Протасов А.С., Сенина М.О., Лемешев Д.О. Методы синтеза порошков иттрий-алю-миниевого граната для получения прозрачной керамики // Успехи в химии и химической технологии. 2020. № 34. С. 80-82.
Yagi H., Takaichi K., Ueda K.I., Yamasaki Y., Yanagitani T., Kaminskii A.A. The physical properties of composite YAG ceramics // Laser Physics-Lawrence. 2005. Vol. 15 (9). Р. 1338-1344.
Lu J., Prabhu M., Song J., Li C., Xu J., Ueda K., Yanagitani T. Optical properties and highly efficient laser oscillation of Nd: YAG ceramics // Applied Physics B. 2000. Vol. 71 (4). Р. 469-473.
Гаранин С.Г., Дмитрюк А.В., Жилин А.А., Михайлов М.Д., Рукавишников Н.Н. Лазерная керамика. 1. Методы получения // Оптический журнал. 2010. № 77 (9). С. 52-68.
Салихов Т.П., Кан В.В., Уразаева Э.М., Саватюгина Т.В., Арушанов Г.М., Кан С.Н. Получение мелкокристаллического иттрий-алюминиевого граната в солнечных печах // Новые огнеупоры. 2017. № 3. С. 144-147.
Нейман А.Я., Ткаченко Е.В., Квичко Л.А., Коток Л.А. Условия и макромеханизм твердофазного синтеза алюминатов иттрия // Журнал неорганической химии. 1980. № 25 (9). С. 2340-2345.
Valiev D., Han T., Vaganov V., Stepanov S. The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor // Journal of Physics and Chemistry of Solids. 2018. Vol. 116. Р. 1-6.
Федоров П.П., Маслов В.А., Усачев В.А., Кононенко Н.Э. Синтез лазерной керамики на основе нанодисперсных порошков алюмоиттриевого граната Y3ALO12 // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2012. № 8. С. 28-44.
Katelnikovas A., Barkauskas J., Ivanauskas F., Beganskiene A., Kareiva A. Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model // Journal of Sol-Gel Science and Technology. 2007. Vol. 41 (3). Р. 193-201.
Singlard M., Remondiere F., Oriol S., Fiore G., Vieille B., Vardelle M., Rossignol S. Sol-gel synthesis of yttrium aluminum garnet (YAG): effects of the precursor nature and concentration on the crystallization // Journal of Sol-Gel Science and Technology. 2018. Vol. 87 (2). Р. 496-503.
Li X., Liu H., Wang J.Y., Cui H.M., Han F., Zhang X.D., Boughton R.I. Rapid synthesis of YAG nano-sized powders by a novel method // Materials Letters. 2004. Vol. 58 (19). Р. 2377-2380.
Rahmani M., Mirzaee O., Tajally M., Loghman-Estarki M.R. A comparative study of synthesis and spark plasma sintering of YAG nano powders by different co-precipitation methods // Ceramics International. 2018. Vol. 44 (9). Р. 10035-10046.
Arabgari S., Malekfar R., Motamedi K. Parameters effects on the surface morphology and structure of Nd: YAG nanopowders synthesized by co-precipitation method // Journal of Nanoparticle Research. 2010. Vol. 13 (2). Р. 597-611.
Lyamina G., Ilela A., Khasanov O., Petyukevich M., Vaitulevich E. Synthesis of AhO3-ZrO2 powders from differently concentrated suspensions with a spray drying technique // AIP Conference Proceedings. 2016. Vol. 1772 (1). Art. 020011.
Илела А.Э. Разработка технологии получения нанопорошков оксидов алюминия и циркония и материалов на их основе методом распылительной сушки растворов и суспензий : дис.. канд. техн. наук : 05.17.11. Томск, 2020. 163 л.
Suarez M., Fernandez A., Menendez J. L., Torrecillas R. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency // Journal of Alloys and Compounds. 2010. Vol. 493 (1-2). Р. 391-395.
Peng D.A.I., Cheng J.I., Liming S.H., Qi Q.I., Guobiao G.U., Zhang X., Ningzhong B. Photoluminescence properties of YAG: Ce3+, Pr3+ nano-sized phosphors synthesized by a modified co-precipitation method // Journal of Rare Earths. 2017. Vol. 35 (4). Р. 341-346.
Li X., Liu H., Wang J., Zhang X., Cui H. Preparation and properties of YAG nano-sized powder from different precipitating agent // Optical Materials. 2004. Vol. 25 (4). Р. 407-412.
Liu W., Zhang W., Li J., Kou H., Shen Y., Wang L., Pan, Y. Influence of pH values on (Nd+ Y): Al molar ratio of Nd: YAG nanopowders and preparation of transparent ceramics // Journal of Alloys and Compounds. 2010. Vol. 503 (2). Р. 525-528.
Li J.G., Ikegami T., Lee J.H., Mori T. Characterization of yttrium aluminate garnet precursors synthesized via precipitation using ammonium bicarbonate as the precipitant // Journal of Materials Research. 2000. Vol. 15 (11). Р. 2375-2386.
Gong H., Tang D.Y., Huang H., Ma J. Agglomeration control of Nd: YAG nanoparticles via freeze drying for transparent Nd: YAG ceramics // Journal of the American ceramic society. 2009. Vol. 92 (4). Р. 812-817.
Li J., Pan Y., Qiu F., Wu Y., Liu W., Guo J. Synthesis of nanosized Nd: YAG powders via gel combustion // Ceramics International. 2007. Vol. 33 (6). Р. 1047-1052.
 Synthesis of AI<sub>2</sub>O<sub>3</sub>-Y<sub>2</sub>O<sub>3</sub> Powders from Suspensions with a Spray Drying Technique | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 28. DOI: 10.17223/24135542/28/4

Synthesis of AI2O3-Y2O3 Powders from Suspensions with a Spray Drying Technique | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2022. № 28. DOI: 10.17223/24135542/28/4

Download full-text version
Counter downloads: 90