Self-healing of defects in ceramic composites ZrB2–SiC–TaB2 with dual composite structure | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 37. DOI: 10.17223/24135542/37/4

Self-healing of defects in ceramic composites ZrB2–SiC–TaB2 with dual composite structure

The paper presents the results of the study of self-healing of ceramic composite materials of ZrB2-SiC-TaB2 system with the structural architecture - «composite in composite», which is formed according to the principle of two-phase composite inclusions in two-phase composite matrix, and homogeneous distribution of components. It is shown that self-healing of surface defects occurs as a result of interaction of composite components with air oxygen, which provides filling of formed defects by products of oxidation reaction. It is revealed that the structure «composite in composite» allows to extend the temperature range of self-healing and increase the oxidation resistance of the studied ceramics. Dual composites with 10 and 20 vol% of composite inclusions and a composite with homogeneous distribution of components are characterized by self-healing at a lower temperature than composites with a higher content of composite inclusions, which is due to the lower oxidation resistance of the composite matrix based on ZrB2. On the surface of the composite with 20 vol% of inclusions, the defect is completely healed at 1400 °C, which is the lowest temperature for all the composites investigated. The dual composites with 30, 40 and 50 vol% inclusions have higher oxidation resistance compared to the composites with lower volume inclusion content, which is due to the localization of TaB2, which has a higher oxidation activation energy. The mass gain of composites with the volume content of inclusions more than 20 % is significantly lower than that of composites with lower inclusion content at all investigated annealing temperatures in air. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 2

Keywords

zirconium diboride, silicon carbide, tantalum diboride, «composite in composite», self-healing

Authors

NameOrganizationE-mail
Shmakov Vasiliy V.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciencesvvshmakov@ispms.ru
Buyakov Ales S.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciencesalesbuyakov@ispms.ru
Lukyanets Marianna P.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciencesmpv97@ispms.ru
Buyakova Svetlana P.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciencessbuyakova@ispms.ru
Всего: 4

References

Meléndez-Martınez J.J., Domınguez-Rodrıguez A., Monteverde F. et al. Characterisation and high temperature mechanical properties of zirconium boride-based materials // Journal of the European Ceramic Society. 2002. Vol. 22. P. 2543-2549.
Fahrenholtz W.G., Hilmas G.E., Talmy I., Zaykoski J.A. Refractory diborides of zirconium and hafnium // Journal of the American Ceramic Society. 2007. Vol. 90. P. 1347-1364.
Li J., Lenosky T.J., Forst C.J., Yip S. Thermochemical and mechanical stabilities of the oxide scale of ZrB2+ SiC and oxygen transport mechanisms // Journal of the American Ceramic Society. 2008. Vol. 91. P. 1475-1480.
Лямина Г.В., Зыкова Ю.А., Князева Е.П. Применение полимерного геля как модельной среды для оценки коррозионной устойчивости металлов // Вестник Томского государственного университета. Химия. 2016. № 4. С. 22-30.
Zhang X., Xu L., Du S. et al. Preoxidation and Crack-Healing Behavior of ZrB2-SiC Ceramic Composite // Journal of the American Ceramic Society. 2008. Vol. 91. P. 4068-4073.
Rezaie A., Fahrenholtz W.G., Hilmas G.E. Oxidation of zirconium diboride-silicon carbide at 1500° C at a low partial pressure of oxygen // Journal of the American Ceramic Society. 2006. Vol. 89. P. 3240-3245.
Rezaie A., Fahrenholtz W.G., Hilmas G.E. Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500°C // Journal of the European Ceramic Society. 2007. Vol. 27. P. 2495-2501.
Carney C.M., Mogilvesky P., Parthasarathy T.A. Oxidation behavior of zirconium diboride silicon carbide produced by the spark plasma sintering method // Journal of the American Ceramic Society. 2009. Vol. 92. P. 2046-2052.
Zhang H., Jayaseelan D.D., Bogomol I. et al. A novel microstructural design to improve the oxidation resistance of ZrB2-SiC ultra-high temperature ceramics (UHTCs) // Journal of Alloys and Compounds. 2019. Vol. 785. P. 958-964.
Mallik M., Ray K.K., Mitra R. Oxidation behavior of hot pressed ZrB2-SiC and HfB2-SiC composites // Journal of the European Ceramic Society. 2011. Vol. 31. P. 199-215.
Eakins E., Jayaseelan D.D., Lee W.E. Toward oxidation-resistant ZrB 2-SiC ultra high temperature ceramics // Metallurgical and Materials Transactions A. 2011. Vol. 42. P. 878-887.
Peng F., Van Laningham G., Speyer R.F. Thermogravimetric analysis of the oxidation resistance of ZrB2-SiC and ZrB2-SiC-TaB2-based compositions in the 1500-1900°C range // Journal of Materials Research. 2011. Vol. 26. P. 96-107.
Guo S.Q., Yang J.M., Tanaka H., Kagawa Y. Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles // Composites Science and Technology. 2008. Vol. 68. P. 3033-3040.
Burlachenko A.G., Mirovoy Yu.A., Dedova E.S., Buyakova S.P. Self-healing in high temperature ZrB2-SiC ceramics // AIP Conference Proceedings. 2019. Vol. 2167. Art. 020042.
Monteverde F., Saraga F., Reimer T., Sciti D. Thermally stimulated self-healing capabilities of ZrB2-SiC ceramics // Journal of the European Ceramic Society. 2021. Vol. 41. P. 7423-7433.
Savchenko N.L., Mirovoy Y.A., Buyakov A.S. et al. Adaptation and self-healing effect of tribo-oxidizing in high-speed sliding friction on ZrB2-SiC ceramic composite // Wear. 2020. Vol. 446. Art. 203204.
Buyakov A., Shmakov V., Buyakova S. Dual composite architectonics: Fracture toughness and self-healing of ZrB2-SiC-TaB2 based UHTC // Ceramics International. 2023. Vol. 49. P. 13648-13656.
Buyakov A., Shmakov V., Buyakova S. Dual composite architectonics: Behavior of ZrB2-SiC-TaB2 composites under abrasive conditions // Ceramics International. 2024. Vol. 50. P. 1849-1856.
Cheng Y., Lyu Y., Han W. et al. Multiscale toughening of ZrB2-SiC-Graphene@ ZrB2-SiC dual composite ceramics // Journal of the American Ceramic Society. 2019. Vol. 102. P. 2041-2052.
Inoue R., Arai Y., Kubota Y. et al. Oxidation of ZrB 2 and its composites: a review // Journal of Materials Science. 2018. Vol. 53. P. 14885-14906.
Ren X., Wang W., Shang T. et al. Dynamic oxidation protective ultrahigh temperature ceramic TaB2-20% wtSiC composite coating for carbon material // Composites Part B: Engineering. 2019. Vol. 161. P. 220-227.
Silvestroni L., Guicciardi S., Melandri C., Sciti D. TaB2-based ceramics: microstructure, mechanical properties and oxidation resistance // Journal of the European Ceramic Society. 2012. Vol. 32. P. 97-105.
Dodi E., Balak Z., Kafashan H. Oxidation-affected zone in the sintered ZrB2-SiC-HfB2 composites // Synthesis and Sintering. 2022. Vol. 2. P. 31-36.
Zhang X., Hilmas G.E., Fahrenholtz W.G. Densification, mechanical properties, and oxidation resistance of TaC-TaB2 ceramics // Journal of the American Ceramic Society. 2008. Vol. 91. P. 4129-4132.
Kalinnikov G.V., Vinokurov A.A., Kravchenko S.E. et al. Oxidation Behavior of Zirconium Diboride Nanoparticles // Inorganic Materials. 2018. Vol. 54. P. 550-557.
Vinokurov A.A., Dremova N.N., Kalinnikov G.V. et al. Thermal Oxidation of Nanosized Tantalum Diboride // Protection of Metals and Physical Chemistry of Surfaces. 2024. Vol. 60. P. 86-92.
Peng F., Berta Y., Speyer R.F. Effect of SiC, TaB2 and TaSi2 additives on the isothermal oxidation resistance of fully dense zirconium diboride // Journal of Materials Research. 2009. Vol. 24. P. 1855-1867.
Monteverde F., Silvestroni L.Combined effects of WC and SiC on densification and thermo-mechanical stability of ZrB2 ceramics // Materials & Design. 2016. Vol. 109. P. 396-407.
Guo W.M., Zhang G.J. Oxidation resistance and strength retention of ZrB2-SiC ceramics // Journal of the European Ceramic Society. 2010. Vol. 30. P. 2387-2395.
 Self-healing of defects in ceramic composites ZrB<sub>2</sub>–SiC–TaB<sub>2</sub> with dual composite structure | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 37. DOI: 10.17223/24135542/37/4

Self-healing of defects in ceramic composites ZrB2–SiC–TaB2 with dual composite structure | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 37. DOI: 10.17223/24135542/37/4

Download full-text version
Counter downloads: 50