Carbon materials for electrochemical energy storage devices. Studies of structure by x-ray diffraction | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 38. DOI: 10.17223/24135542/38/5

Carbon materials for electrochemical energy storage devices. Studies of structure by x-ray diffraction

In this paper it is discussed X-ray diffraction patterns of carbon materials that are promising for use as components of electrodes in electrochemical energy storage devices such as supercapacitors, lithium-ion and post- lithium-ion batteries: graphites, graphenes, carbon nanofibers, nanotubes and carbon blacks. Based on the X-ray diffraction patterns, the following characteristics of carbons were calculated: interplanar distance, crystallite sizes, the number of aromatic layers and carbon atoms in crystallites, the content of the amorphous phase and the crystallographic density. In the studied graphites, the proportion of the amorphous phase varies in the range of 0.5-10%, the interplanar distance is 3.35 A. The proportion of the amorphous phase in carbon nanofibers is 10-15%, and the interplanar distance is 3.40 A. For the studied carbon nanotubes, the interplanar distance was 3.45-3.48 A, and the proportion of the amorphous phase was 40-60%. The interplanar distance in carbon blacks varies in the range of 3.5-3.7 A, and the proportion of the amorphous phase reaches 70%. The structure of all the studied carbon materials contains highly crystalline and low crystalline phases, as well as an amorphous phase. In the X-ray patterns of nanofibers, nanotubes and carbon blacks, a shift and broadening of the (002) bands is observed compared to graphite. This shift indicates an increase in the defectiveness of the crystal lattice. The calculated crystallographic density of the studied samples of allotropic forms of carbon is 2.28 g/cm3 for graphites, 2.22 g/cm3 for carbon nanofibers, 2.19-2.20 g/cm3 for carbon nanotubes, and 1.96-2.20 g/cm3 for carbon black. Thus, based on the conducted studies, it can be concluded that the smallest amount of amorphous phase is observed in graphites, and the largest - in carbon blacks. Graphites have the smallest interplanar distance, and carbon blacks - the largest. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 4

Keywords

X-ray phase analysis, graphite, nanotubes, nanofibers, carbon black

Authors

NameOrganizationE-mail
Kuzmina Elena V.Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Scienceskuzmina@anrb.ru
Gaifullina Elvina R.Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State Pedagogical University named after M. Akmullae.gaifullina02@mail.ru
Shakirova Nadezhda V.Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciencesshakirova.elchem@gmail.com
Yusupova Alfia R.Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciencesalfia_yusupova@mail.ru
Akhmetshin Bulat S.Ufa University of Science and Technologyakhbulat@mail.ru
Kolosnitsyn Vladimir S.Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Scienceskolos@anrb.ru
Всего: 6

References

Иванищев А.В., Иванищева И.А., Нам, С.Ч.; Мун, Д. Электроактивные композиты на основе интеркаляционных соединений лития и материалов с высокими проводящими свойствами: способы получения и электрохимические характеристики // Электрохимия. 2021. № 57 (7). С. 408-423.
Кулова Т.Л. Новые электродные материалы для литий-ионных аккумуляторов (об зор) // Электрохимия. 2013. № 49 (1). С. 3-28.
Wang C., Hong J. Ionic/electronic conducting characteristics of LiFePO4 cathode materi als // Electrochemical and Solid-State Letters. 2007. Vol. 10 (3). P. 65-69.
Amin R., Chiang Y.M. Characterization of electronic and ionic transport in Li1xNi0.33Mn0.33 Co0.33O2(NMC333) and Li1- xNi0.50Mn0.20Co0.30O2(NMC523) as a function of Li content // Journal of The Electrochemical Society. 2016. Vol. 163 (8). P. A1512-A1517.
Yang C.Z., Lou Y., Zhang J., Xie X., Xia B. Materials and working mechanisms of secondary batteries. Springer, 2023. 781 p.
Чудинов Е.А., Ткачук С.А. Технологические основы производства литий-ионного аккумулятора // Электрохимическая энергетика. 2015. № 15 (2). С. 84-92.
Дубасова В.С., Михайлова В.А., Николенко А.Ф., Пономарева Т.А., Смирнова Т.Ю., Плешаков В.Ф. Емкостные характеристики углеродных анодных материалов на основе российского природного графита для литий-ионных аккумуляторов // Электрохимия. 2013. № 49 (2). С. 178-193.
Трешкина Ю.И., Крюков А.Ю., Десятов А.В. Влияние добавок УНТ на свойства гра фитовых и смесевых анодов литий-ионных аккумуляторов // Успехи в химии и химической технологии. 2023. Т. 37, № 12. С. 175-177.
Вольфкович Ю.М. Суперконденсаторы, выпускаемые промышленными компани ями // Электрохимическая энергетика. 2024. № 24 (1). С. 3-27.
Вольфкович Ю.М. Электрохимические суперконденсаторы (обзор) // Электрохимия. 2021. № 57 (4). С. 197-238.
Lu L., Sahajwalla V., Kong C., Harris D. Quantitative X-ray diffraction analysis and its application to various coals // Carbon. 2001. Vol. 39 (12). P. 1821-1833.
Manoj B., Kunjomana A.G. Study of stacking structure of amorphous carbon by X-ray diffraction technique // International Journal of Electrochemical Science. 2012. Vol. 7 (4). P. 3127-3134.
Богданов С.П. Рентгеноструктурный анализ углеродных материалов. СПб.: СПбГТИ(ТУ), 2013, 26 с.
Lee S.M., Lee S.H., Roh J.S. Analysis of activation process of carbon black based on structural parameters obtained by XRD analysis // Crystals. 2021. Vol. 11 (2). P. 1-11.
Kang D.S., Lee S.M., Lee S.H., Roh J.S. X-ray diffraction analysis of the crystallinity of phenolic res-in-derived carbon as a function of the heating rate during the carbonization process // Carbon Letters. 2018. Vol. 27 (1). P. 108-111.
 Carbon materials for electrochemical energy storage devices. Studies of structure by x-ray diffraction | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 38. DOI: 10.17223/24135542/38/5

Carbon materials for electrochemical energy storage devices. Studies of structure by x-ray diffraction | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 38. DOI: 10.17223/24135542/38/5

Download full-text version
Counter downloads: 27