Dissolution of Clinker Minerals C3S, C2S, C3A, and C4AF: Application of a Machine Learning Model | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 39. DOI: 10.17223/24135542/39/1

Dissolution of Clinker Minerals C3S, C2S, C3A, and C4AF: Application of a Machine Learning Model

The study focuses on the quantitative analysis of the dissolution kinetics of clinker minerals (C3S, C2S, C3A, C4AF) during the isothermal hardening of Portland cement within the temperature range of40-70 °C. Based on quantitative phase analysis data (Rietveld method) and stoichiometric ratios of hydration reactions, a hybrid approach integrating a dual-exponential kinetic model and a machine learning method (Random Forest Regressor) was developed. The model is grounded in experimental results on the mass fraction of Portland cement hydration products at temperatures of 40, 50, and 70 °C. The quantitative content of the products was determined by the Rietveld method as a function of hardening time. It was established that the temperature dependence of the dissolution rate is most pronounced for C3S. At 70 °C, the residual mass fraction of alite decreases to 10% within 51 hours. The model separates the contributions of surface chemical dissolution and diffusion mass transfer through the layer of hydration products. The parameters of the dual-exponential model were approximated with high accuracy (convergence criterion Rwp = 7.0-9.4%). The kinetic part of the model considers the dissolution rate constants (ki, кг), mass change, ion concentrations (Ca2+, SiO44-, Al3+, Fe3+), and the thickness of the diffusion layer (5) of the clinkers. It was found that increasing temperature leads to a significant acceleration of dissolution, a reduction in diffusion layer thickness, and an increase in ion concentration. Moreover, the most pronounced effect is observed for alite (C3S) and aluminate (C3A). The activation energy values (45-55 kJ/mol) indicate a mixed mechanism controlling the kinetics. The hybrid model demonstrates good accuracy (R2 > 0.92) and enables the prediction of the phase composition kinetics of cement systems, accounting for the formation of metastable hydration products. The obtained results are significant for selecting optimal heat treatment regimes for cement compositions with specified service properties. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Keywords

dissolution kinetics, clinker minerals, machine learning, dual-exponential dissolution model, Portland cement

Authors

NameOrganizationE-mail
Abzaev Yurii A.Tomsk State University of Architecture and Buildingabzaev2010@yandex.ru
Korobkov Sergey V.Tomsk State University of Architecture and Buildingkorobkovsv1973@mail.ru
Karakchieva Natalia I.Tomsk State Universitykarakchieva@mail.tsu.ru
Всего: 3

References

Тейлор Г. Химия цемента : пер. с англ. 2-е изд. М. : Мир, 2003. 560 с.
Richardson I.G. Model structures for C-(A)-S-H(I) // Acta Crystallographica B. 2014. Vol. 70. P. 903-923.
Scrivener K.L., Snellings R., Lothenbach B. Application of the Rietveld method to anhydrous cement // Cement and Concrete Research. 2011. Vol. 41. P. 133-148.
Бабушкин В.И., Матвеев Г.М., Мчедлов-Петросян О.П. Термодинамика силикатов : учеб. пособие для химических специальностей вузов. 2-е изд., перераб. и доп. М. : Стройиздат, 1986. 408 с.
Shasavari R., Rougelot T., Pellenq R.J.M., Yip S. Elastic constants of hydrated oxides // Journal of the American Ceramic Society. 2009. Vol. 92 (10). P. 2323-2330.
Myers R., Bernal S.L., Provis J.L. Structural description of calcium-sodium aluminosilicate hydrate gels // Langmuir. 2013. Vol. 29. P. 5294-5306.
Taylor R., Richardson I.G., Brydson R.M.D.Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag // Cement and Concrete Research. 2010. Vol. 40 (7). P. 971-983.
Гныря А.И., Абзаев Ю.А., Коробков С.В., Мокшин Д.И., Гаусс К.С., Бояринцев А.П. Влияние длительности низкотемпературного твердения на структуру цементного камня // Известия вузов. Строительство. 2017. № 5. С. 49-58.
Гныря А.И., Абзаев Ю.А., Коробков С.В., Бояринцев А.П., Мокшин Д.И., Гаусс К.С. Влияние времени и повышенной температуры на структурообразование цементного камня // Известия вузов. Строительство. 2017. № 8. С. 34-45.
Abzaev Yu.A., Gnyrya A.I., Korobkov S.V., Gauss K.S. Phase analysis of hydrated Portland cement // IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 193. Art. 012001. doi: 10.1088/1755-1315/193/1/012001.
Le Saout G., Kocaba V., Gallucci E. Influence of the solution composition on the water distribution in hydrated tricalcium silicate pastes: An experimental and numerical study // Cement and Concrete Research. 2011. Vol. 41 (2). P. 133-148.
MLPRegressor documentation // Scikit-leam. URL: https://scikit-leam.org/stable/modules/generated/skleam.neural_network.MLPRegressor.html (accessed: 20.08.2025).
Richardson I.G. Tobermorite-based models of C-S-H: Applications to hardened pastes of tricalcium silicate, P-dicalcium silicate, portland cement, and blends of portland cement with blast-furnace slag, metakaolin, or silica fume // Cement and Concrete Research. 2004. Vol. 34 (9). P. 1733-1777.
Crystallography Open Database. URL: www.crystallography.net (accessed: 20.08.2025).
 Dissolution of Clinker Minerals C3S, C2S, C3A, and C4AF: Application of a Machine Learning Model | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 39. DOI: 10.17223/24135542/39/1

Dissolution of Clinker Minerals C3S, C2S, C3A, and C4AF: Application of a Machine Learning Model | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 39. DOI: 10.17223/24135542/39/1

Download full-text version
Counter downloads: 67