Plasmochemical synthesis of the W–Y2O3 composition nanopowders using thermal plasma of electric-arc discharge | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 39. DOI: 10.17223/24135542/39/2

Plasmochemical synthesis of the W–Y2O3 composition nanopowders using thermal plasma of electric-arc discharge

Object. The results of experimental studies of nanopowders synthesis for the W-Y2O3 system using plasmachemical synthesis are presented. The main task was to obtain W-Y2O3 nanopowders composition with homogeneous distribution of yttrium oxide. Methods. Investigation of producing process for the nanopowders composition were carried out at the experimental setup developed by IMET RAS (RU Patent 2311225) when mixture of initial precursors (tungsten trioxide and yttrium acetate) interacts with nitrogen-hydrogen plasma generated in electric arc plasmatron with up to 30 kW power. Results. Distribution homogeneity in the composition was observed using element microanalysis (EDX) for different specified concentrations of yttrium oxide (0.3, 1.2, 5.0 wt%) at the stage of precursors mixture preparing and for synthesized nanopowders composition - the calculated content of yttrium oxide in the composition corresponds to 0.3, 1.3, 4.5 wt% for the mixture of initial materials and 0.6, 1.0, 3.8 wt% for the obtained nanopowders composition, respectively. Gas content analysis showed that the carbon content does not exceed 0.03-0.04 wt%, and the oxygen content is 2.2-2.6, 1.7-2.0, 3.5-5.0 wt% for W-Y2O3 composition with specified concentration of yttrium oxide 0.3, 1.2 and 5.0 wt%, respectively. Nitrogen content in the nanopowders compositions and tungsten nanopowder (0.1-0.2 wt%) corresponds to physical adsorption on nanoparticle surface. It is noted that the content of 1.2 wt% yttrium oxide in the composition gives the powder resistance to oxidation compared to pure tungsten nanopowder - the oxygen content for W-Y2O3 (1.2%) corresponds to [O] = 1.7-2.0% (taking into account the oxygen content in yttrium oxide [O] Y2O3 = 0.26%), and in tungsten nanopowder - [O] = 2.2-2.4%. SEM and TEM micrographs show that composition nanoparticles have characteristic size 20-200 nm. Using EDX microanalysis, it was found that Y2O3 homogeneous distribution over the surface of all tungsten nanoparticles is achieved. X-ray phase analysis showed that in the W-Y2O3 nanopowder composition there are W-phase and W3O traces, Y2O3 presence is hardly noticeable. When compared with tungsten nanoparticles, insignificant change in the lattice parameter (a) from 3.166 to 3.167 A, and increase in crystallite size (CSR) from 32 to 36-38 nm noted for the composition. Conclusions. Formation patterns for W-Y2O3 nanopowders composite with content of yttrium oxide in the range from 0.3 to 5.0 wt% are established; parameters and conditions of plasmachemical synthesis are determined, at which complete conversion of initial reagents into target products with uniform distribution of yttrium oxide in synthesized nanopowders is achieved. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Keywords

plasmochemical synthesis, nanopowders, thermal plasma, tungsten, yttrium oxide

Authors

NameOrganizationE-mail
Samokhin Andrey V.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Scienceasamokhin@imet.ac.ru
Alexeev Nikolay V.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Sciencenvalexeev@yandex.ru
Sinayskiy Mikhail A.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Sciencems18@mail.ru
Fadeev Andrey A.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Scienceafadeev@imet.ac.ru
Dorofeev Alexey A.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Scienceadorofeev@imet.ac.ru
Kalashnikov Yulian P.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Scienceulian1996@inbox.ru
Terentev Alexander V.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Scienceaterentev@imet.ac.ru
Andreeva Nadezhda A.A.A. Baikov Institute of metallurgy and material science of Russian Academy of Sciencenandreeva@imet.ac.ru
Всего: 8

References

Wang S., Luo L., Zhao M., Zhu X., Wu Y., Luo G. Current status and development trend of toughening technology of tungsten-based materials // Xiyou Jinshu. 2015. Vol. 39 (8). Р. 741-748.
Климова О.Г. Структура и свойства спеченных сплавов на основе вольфрама, полу ченных с использованием наноразмерных порошков : дис.. канд. техн. наук. СПб., 2011. 150 с.
Fang Z.Z., Ren C., Simmons M., Sun P. The effect of Ni doping on the mechanical behavior of tungsten // Int. J. Refract. Met. Hard Mater. 2020. Vol. 92. Art. 105281.
Сокол И.В., Сундуков А.М. Способ получения композиционного материала на основе псевдосплава вольфрам-медь: пат.RU 2043861 C1 Рос. Федерация. №2043861; заявл. 20.09.1995.
Veleva L. Contribution to the Production and Characterization of W-Y, W-Y2O3 and W-TiC Materials for Fusion Reactors : PhD thesis work No. 4995. Suisse, 2011. doi: 10.5075/EPFL-THESIS-4995.
Howard L., Parker G.D., Yu Xiao-Ying. Progress and challenges of additive manufacturing of tungsten and alloys as plasma-facing materials // Materials. 2024. Vol. 17. Art. 2104.
You J.H., Mazzone G., Visca E., Greuner H., Fursdon M., Addab Y., Bachmann C., Barrett T., Bonavolonta U., Boswirth B. et al. Divertor of the European DEMO: Engineering and technologies for power exhaust // Fusion Eng. Des. 2022. Vol. 175. Art. 113010.
Ильющенко А.Ф., Батырбеков Э.Г., Бакланов В.В., Савич В.В., Коняев Е.Т., Лецко А.И., Миниязов А.Ж., Кузнечик О.О. Перспективы использования порошковых материалов на основе вольфрама и титана для изготовления защиты первой стенки и дивертора термоядерного реактора // Порошковая металлургия : республ. межвед. сб. науч. тр. Минск : Нац. акад. наук Беларуси, 2023. С. 23-41.
Голубева А.В., Черкез Д.И. Накопление водорода в разработанных для термоядерных установок сплавах вольфрама // Вопросы атомной науки и техники (термоядерный синтез). 2018. № 41 (4). С. 26-37.
Jenus P., Abram A., Novak S., Kelemen M., Pecovnik M., Schwarz-Selinger T., Markelj S. Deuterium retention in tungsten, tungsten carbide and tungsten-ditungsten carbide composites // Journal of Nuclear Materials. 2023. Vol. 581. Art. 154455.
Qin M., Yang J., Chen Z., Chen P., Zhao S., Cheng J., Cao P., Jia B., Chen G., Zhang L., Qu X. Preparation of intragranular-oxide-strengthened ultrafine-grained tungsten via low-temperature pressureless sintering // Mater. Sci. Eng. A. 2020. Vol. 774. Art. 138878.
Lin J.-S., Luo L.-M., Xu Q., Zhan X. et al. Microstructure and deuterium retention after ion irradiation of W-LrnO3 composites // J. of Nucl. Mater. 2017. Vol. 490. P. 272-278.
Xiao F., Miao Q., Wei S., Barriere T., Cheng G., Zuo S., Xu L. Uniform nanosized oxide particles dispersion strengthened tungsten alloy fabricated involving hydrothermal method and hot isostatic pressing // J. Alloys Compd. 2020. Vol. 824. Art. 153894.
Veleva L., Schaeublin R., Battabyal M., Plociski T., Baluc N. Investigation of microstructure and mechanical properties of W-Y and W-Y2O3 materials fabricated by powder metallurgy method // International Journal of Refractory Metals and Hard Materials. 2015. Vol. 50. P. 210-216.
Heo Youn Ji, Lee Eui Seon, Kim Jeong Hyun, Lee Young-In, Jeong Young-Keun, Oh Sung-Tag. Synthesis and Characterization of W Composite Powder with La2O3-Y2O3 Nano-dispersoids by Ultrasonic Spray Pyrolysis // Archives of Metallurgy and Materials. 2022. Vol. 67 (4). P. 1507-1510. doi: 10.24425/amm.2022.141083.
Hu W., Dong Z., Yu L., Ma Z., Liu Y. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering // J. Mater. Sci. Technol. 2020. Vol. 36. P. 84-90.
Dong Z., Liu N., Ma Z., Liu C., Guo Q., Yamauchi Y., Alamri H.R., Alothman Z.A., Hossain M.S.A., Liu Y. Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy // Int. J. Refract. Met. Hard Mater. 2017. Vol. 69. P. 266-272.
Antolak-Dudka A., Oleszak D., Zielinski R., Kulik T. W-Y2O3 composites obtained by mechanical alloying and sintering // Advanced Powder Technology. 2021. Vol. 32 (2). P. 390-397.
Wahlberg S. et al. Fabrication of nanostructured W-Y2O3 materials by chemical methods // Journal of Materials Chemistry. 2012. Vol. 22. P. 12622-12628.
Kim J.H., Ji M., Choi W.Ju., Byun J., Lee Y.In. Effect of Y2O3 nanoparticles on enhancing microstructure and mechanical properties of oxide dispersion strengthened W alloy // International Journal of Refractory Metals and Hard Materials. 2024. Vol. 119. Art. 106534.
Hu W., Dong Z., Ma Z., Liu Y. Microstructure refinement in W-Y2O3 alloys via an improved hydrothermal synthesis method and low temperature sintering // Inorg. Chem. Front. 2020. Vol. 7. P. 659-666.
Zhao S., Lv Y., Zhang Z., Fan J. Synthesis and Characterization of W-Y2O3 Composites with Core-Shell Structure Via Wet Chemical Method in an Acidic Solution // International Journal of Refractory Metals and Hard Materials. 2024. Vol. 122. Art. 106729.
Liu N., Dong Z., Ma Z., Yu L., Li C., Liu C., Guo Q., Liu Y. Eliminating bimodal structures of W-Y2O3 composite nanopowders synthesized by wet chemical method via controlling reaction conditions // J. Alloy.Compd. 2019. Vol. 774. P. 122-128.
Балоян Б.М., Колмаков А.Г., Алымов М.И., Кротов А.М. Наноматериалы : классификация, особенности свойств, применение и технологии получения : учеб. пособие. М. : Междунар. ун-т природы, о-ва и человека «Дубна», фил. «Угреша», 2007. 125 с.
Samokhin A., Alekseev N., Sinayskiy M., Astashov A., Kirpichev D., Fadeev A., Tsvetkov Y., Kolesnikov A. Nanopowders Production and Micron-Sized Powders Spheroidization in DC Plasma Reactors // Powder Technology.IntechOpen, 2018. Ch. 1. P. 4-20.
Самохин А.В., Фадеев А.А., Алексеев Н.В., Дорофеев А.А., Калашников Ю.П., Синайский М.А., Завертяев И.Д. Сфероидизация нанопорошковых микрогранул вольфрама в термической плазме электродугового разряда // Перспективные материалы. 2023. № 12. С. 71-82.
Samokhin A., Alekseev N., Dorofeev A., Fadeev A., Sinaiskiy M. Production of Spheroidized Micropowders of W-Ni-Fe Pseudo-Alloy Using Plasma Technology // Metals. 2024. Vol. 14 (9). Art. 1043. doi: 10.3390/met14091043.
Samokhin A.V., Alekseev N.V., Dorofeev A.A., Fadeev A.A., Sinayskiy M.A., Zavertiaev I.D., Grigoriev Y.V. Preparation of a spheroidized W-Cu pseudo-alloy micropowder with a submicrometer particle structure using plasma technology // Transactions of Nonferrous Metals Society of China (TNMSC). 2024. Vol. 34. P. 592-603. doi: 10.1016/S1003-6326(23)66420-9.
Samokhin A.V., Alekseev N.V., Astashov A.G., Dorofeev A.A., Fadeev A.A., Sinayskiy M.A., Kalashnikov Y.P. Preparation of W-C-Co composite micropowder with spherical shaped particles using plasma technologies // Materials. 2021. Vol. 14 (15). Art. 4258.
Krasovskii P.V., Samokhin A.V., Fadeev A.A., Sinayskiy M.A., Sigalaev S.K. Alloying effects and composition inhomogeneity of plasma-created multimetallic nanopowders: A case study of the W-Ni-Fe ternary system // Journal of Alloys and Compounds. 2018. Vol. 750. P. 265-275.
Пат. РФ № 2311225. МПК B 01 J 19/00. Плазменная установка для получения нанопорошков / Алексеев Н.В., Самохин А.В., Цветков Ю.В. 27.11.2007.
Самохин А.В., Алексеев Н.В., Цветков Ю.В. Плазмохимические процессы создания нанодисперсных порошковых материалов // Химия высоких энергий. 2006. № 40 (2). С. 120-125.
Пущаровский Д.Ю. Рентгенография минералов. М. : Геоинформмарк, 2000. 296 с.
 Plasmochemical synthesis of the W–Y<i>2</i>O<i>3</i> composition nanopowders using thermal plasma of electric-arc discharge | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 39. DOI: 10.17223/24135542/39/2

Plasmochemical synthesis of the W–Y2O3 composition nanopowders using thermal plasma of electric-arc discharge | Vestnik Tomskogo gosudarstvennogo universiteta. Chimia – Tomsk State University Journal of Chemistry. 2025. № 39. DOI: 10.17223/24135542/39/2

Download full-text version
Counter downloads: 67