Теорема 1. Пусть g — произвольная подстановка из $S(\mathbb{Z}_n)$ и подмножество $W_1\subseteq ED_g$ таково, что $|W_1|=\lceil n/2\rceil,\ 0\not\in W_1$. Тогда для каждого $\alpha\in W_1$ выполняется равенство $\hat{p}_{\alpha,W_2}(g)=\hat{p}_{\alpha',W_1}(g)$, где $\alpha'=n-\alpha$ и

$$W_2 = \begin{cases} \{n-\alpha: \alpha \in W_1\}, & \text{если } n \text{ нечётно}, \\ \{n-\alpha: \alpha \in W_1\} \backslash \{n/2\}, & \text{если } n \text{ чётно}. \end{cases}$$

ЛИТЕРАТУРА

- 1. Погорелов Б. А., Пудовкина М. А. $\otimes_{\mathbf{W}, \mathrm{ch}}$ -марковские преобразования // Прикладная дискретная математика. Приложение. 2015. Вып. 8. С. 17–19.
- 2. Кемени Д., Снелл Д. Конечные цепи Маркова. М.: Наука, 1970.

УДК 519.1

DOI 10.17223/2226308X/10/38

О МАТЕМАТИЧЕСКИХ МОДЕЛЯХ ПЕРЕМЕШИВАНИЯ КЛЮЧА В ИТЕРАТИВНЫХ БЛОЧНЫХ АЛГОРИТМАХ ШИФРОВАНИЯ¹

Д. А. Романько, В. М. Фомичев

Представлена математическая модель перемешивания алгоритмами блочного шифрования битов ключа $k \in \{0,1\}^l$. Для симметричного итеративного r-раундового блочного алгоритма шифрования пусть B_q — множество номеров координат ключевого вектора k, от которых существенно зависит раундовый ключ q; q_i — λ -битовый ключ i-го раунда; ϕ_{q_i} — подстановка i-го раунда; A — матрица существенной зависимости раундовой функции ϕ ; $\Phi_p = \phi_{q_p} \cdot \ldots \cdot \phi_{q_1}, i, p \in \{1, \ldots, r\};$ ρ — наименьшее натуральное число, при котором каждый бит ключа k является существенной переменной функции $\Phi_p, \rho \in \{1, \ldots, r\}$. Для блочного алгоритма показателем $p(q_i)$ относительно раундового ключа q_i (ключевым показателем p(k)) называется наименьшее натуральное число $p \in \{1, \ldots, r\}$, при котором каждый бит блока данных $\Phi_p(x)$ существенно зависит от каждого бита раундового ключа q_i (ключа k).

Если $B_{q_i}\cap B_{q_j}=\varnothing$ для всех $i,j\in\{1,\ldots,\rho\},\ i\neq j,\ h$ и h'—подстановки множества $\{0,1\}^\lambda$, то: 1) если выходной блок алгоритма зависит от каждого бита ключа k, то $p(k)=p(q_1)+(\rho-1);\ p(q_i)=p(q_1)+(i-1)$ для $i=1,\ldots,\rho;\ 2)$ $p(k)\geqslant \geqslant I$ *-ехр $A+(\rho-1),$ где $I=\{1,\ldots,n\},$ если $\phi(x,q)=h(x\oplus q),$ и $I=\{1\},$ если $\phi(x,q)=h'((x+q)\ \mathrm{mod}\ 2^\lambda);$ здесь I*-ехр A—локальный экспонент матрицы A. Дана оценка ключевого показателя для итеративных блочных шифров Фейстеля, в частности $p(k)\geqslant 10$ для ГОСТ 28147-89.

Ключевые слова: *итеративный блочный алгоритм, локальный экспонент, ключевой показатель итеративного блочного алгоритма.*

Введение

К необходимым условиям обеспечения высокой стойкости блочного шифрования относится зависимость каждого бита выходного блока от всех битов входного блока и ключа (полное перемешивание), что достигается с помощью конструирования сложных функциональных связей между входными и выходными данными алгоритма с использованием итеративного принципа и свойств ключевого расписания.

Перемешивание битов входных данных оценивается обычно с помощью определения экспонентов перемешивающих орграфов раундовых подстановок. Обзор результа-

 $^{^{1}}$ Работа второго автора выполнена в соответствии с грантом РФФИ № 16-01-00226.

тов по оцениванию экспонентов различных классов матриц и орграфов можно найти в [1, гл. 11].

Перемешивание битов ключа имеет особенности, связанные с тем, что ключевые биты вводятся в алгоритм шифрования в ходе нескольких раундов и не всегда регулярным образом. В связи с этим исследование перемешивания блочным алгоритмом ключевых битов требует существенного развития математической модели по сравнению с моделью перемешивания входных блоков. Работа посвящена описанию данных моделей и получению оценок характеристик перемешивания битов ключа через локальные экспоненты перемешивающего орграфа раундовой подстановки.

1. Определяющие свойства ключевого перемешивания блочного алгоритма

Пусть \mathcal{A} есть блочный r-раундовый алгоритм шифрования, где блок данных $x \in V_n = \{0,1\}^n$.

Обозначим: $K = V_l$ — ключевое множество алгоритма; V_λ — область значений раундовых ключей; $\phi(x,q): V_n \times V_\lambda \to V_n$ — биективная по переменной x раундовая функция; ϕ_q — раундовая подстановка, полученная из $\phi(x,q)$ при фиксации раундового ключа значением $q; q_i$ — раундовый i-й ключ, генерируемый при основном ключе k алгоритма, $i=1,\ldots,r; g_k$ — шифрующая подстановка алгоритма \mathcal{A} , реализуемая при ключе $k \in K$.

В данных обозначениях λ, l — длины соответственно раундовых ключей и ключа итеративного блочного алгоритма; уравнение шифрования имеет вид $y = g_k(x)$, где шифрующая подстановка определена равенством $g_k = \phi_{q_r} \cdot \ldots \cdot \phi_{q_1}$.

Обозначим B_q множество всех номеров координат ключевого вектора k, от которых существенно зависит раундовый ключ q; тогда выполнено покрытие

$$\{1,\ldots,l\} = B_{q_1} \cup \ldots \cup B_{q_r}. \tag{1}$$

В зависимости от свойств ключевого расписания (зависимы или независимы раундовые ключи) для блоков покрытия (1) множества $\{1,\ldots,l\}$ возможны варианты:

$$B_{q_i} \cap B_{q_j} = \emptyset$$
 для всех $i, j \in \{1, \dots, r\}, \ i \neq j;$ $B_{q_i} \cap B_{q_j} \neq \emptyset$ при некоторых $i, j \in \{1, \dots, r\}.$

Обозначим Φ_p композицию раундовых подстановок $\Phi_p = \phi_{q_p} \cdot \ldots \cdot \phi_{q_1}, p = 1, \ldots, r$. Показателем алгоритма \mathcal{A} относительно раундового ключа q_i называется наименьшее натуральное число $p \in \{1, \ldots, r\}$ (если такое число существует), при котором каждый бит блока данных $\Phi_p(x)$ существенно зависит от каждого бита раундового ключа q_i , обозначим эту величину $p(q_i)$, $i = 1, \ldots, r$. По определению $p(q_i) \geqslant i$.

Ключевым показателем алгоритма \mathcal{A} называется наименьшее натуральное число $p \in \{1, \ldots, r\}$ (если такое число существует), при котором каждый бит блока данных $\Phi_p(x)$ существенно зависит от каждого бита ключа k, обозначим эту величину p(k).

Из определения следует, что если показатель p(k) алгоритма \mathcal{A} существует, то $\min_{1\leqslant i\leqslant r}p(q_i)\leqslant p(k)\leqslant r.$ Установим более точно связь между введёнными ключевыми показателями.

2. Оценка ключевого показателя итеративного блочного алгоритма

Определим $\rho(\mathcal{A})$ (кратко ρ) как наименьшее натуральное число $p \in \{1, \dots, r\}$ (если такое число существует), при котором каждый бит ключа k является существенной

переменной хотя бы для одной из раундовых функций $\phi_{q_1}, \ldots, \phi_{q_p}$. Это определение позволяет уточнить разбиение (1):

$$\{1, \dots, l\} = B_{q_1} \cup \dots \cup B_{q_{\rho}}.$$
 (2)

Теорема 1. Если выходной блок алгоритма $\mathcal A$ зависит от каждого бита ключа k и $B_{q_i}\cap B_{q_j}=\varnothing$ для всех $i,j\in\{1,\ldots,\rho\},\,i\neq j$, то

$$p(q_i) = p(q_1) + (i-1), \quad i = 1, \dots, \rho,$$

 $p(k) = p(q_1) + (\rho - 1).$

Обозначим: $\phi_q^j - j$ -я координатная функция раундовой функции ϕ_q , $j=1,\ldots,n$; $A=(a_{i,j})$ — перемешивающая матрица порядка n (матрица существенной зависимости) раундовой функции ϕ_q , где $a_{i,j}=1$ тогда и только тогда, когда ϕ_q^j зависит существенно от x_i ; в противном случае $a_{i,j}=0$.

Пусть $\emptyset \neq I \subseteq \{1, ..., n\}$ и матрица A(I*) размера $s \times n$ получена из A вычёркиванием строк с номерами $i \notin I$. Наименьшее натуральное число γ , такое, что матрица $A^t(I*)$ состоит из положительных чисел для любого $t \geqslant \gamma$, называется I*-экспонентом матрицы A [2], обозначается I*-ехр A (кратко γ_{I*}).

Показатели $p(q_i)$ и p(k) алгоритма \mathcal{A} зависят не только от свойств покрытий (1) и (2), определяемых ключевым расписанием алгоритма, но и от способа подмешивания ключа и других свойств алгоритма.

Теорема 2. Если выполнено разбиение (2) и $B_{q_i} \cap B_{q_j} = \emptyset$ для всех $i, j \in \{1, \ldots, \rho\}, i \neq j$, то $p(k) \geqslant \gamma_{I*} + (\rho - 1)$, где

- 1) $I = \{1, ..., n\}$, если $\phi(x, q) = h(x \oplus q)$;
- 2) $I = \{1\}$, если $\phi(x,q) = h'((x+q) \bmod 2^{\lambda})$.

Здесь $x,q\in V_{\lambda};\ h$ и h' — подстановки множества $V_{\lambda}.$

Пример. Итеративный блочный шифр Фейстеля.

При реализации раундовой функции Фейстеля n-битовый блок входных данных x разбивается на подблоки x' и x'' по n/2 бит, n чётное, то есть $\lambda = n/2$. Раундовая подстановка определена равенством $\phi(x,q) = (x'',x' \oplus \psi(x'',q))$, где $\psi(x'',q) : V_{n/2} \times V_{n/2} \to V_{n/2}$. Тогда по теореме 2 $p(k) \geqslant \gamma_{I*} + (\rho - 1)$, где

- 1) $I = \{n/2 + 1, n/2 + 2, \dots, n\}$, если $\psi(x'', q) = h(x'' \oplus q)$;
- 2) $I = \{n/2 + 1\}$, если $\psi(x'', q) = h'((x'' + q) \mod 2^{\lambda})$.

В частности, для алгоритма ГОСТ 28147-89 (случай 2) следует положить n=64, $\rho=8$. Из теоремы 2 получаем $p(k)\geqslant \gamma_{I*}+7$, где $I=\{33\}$. С помощью вычислительного эксперимента на ЭВМ для данного алгоритма посчитано $\gamma_{I*}=3$, $\exp A=5$.

В качестве рекомендации для разработчиков по результатам вычислений получены нижние оценки числа r раундов шифрования при использовании операции сложения по модулю 2^{32} для подмешивания раундовых ключей:

- 1) в условиях модели перемешивания битов входных данных $r \ge 5$;
- 2) в условиях модели перемешивания ключевых битов с использованием экспонента раундовой подстановки $r \geqslant 12$;
- 3) в условиях модели перемешивания ключевых битов с использованием локального экспонента раундовой подстановки $r \geqslant 10$.

Наиболее точной является оценка, полученная в условиях третьей модели.

Развитие математического аппарата для оценки перемешивания ключевой информации в итеративных блочных алгоритмах позволяет уточнить приемлемые границы для значений важных параметров блочных шифров.