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Каждый из восьми s-боксов размера 6×4 алгоритма DES можно представить как 32
s-бокса размера 4×4 с помощью фиксаций битов a1 и a6, управляющих выбором одной
из четырёх подстановок степени 16 s-бокса, где a1, a2, . . . , a6 — биты входного набора
s-бокса. При фиксации других битов биективность s-бокса не обеспечена. Установлено,
что 6 s-боксов не обладают свойством 2 (наличие неподвижных точек). Ряд s-боксов не
обладают свойством 4: у 16 s-боксов ps = 8/16, у 14 — ps = 6/16, и имеется по одному
s-боксу, у которых ps = 4/16 и 10/16.
В алгоритме ГОСТ 28147-89 используется 8 s-боксов размера 4×4, имеются ре-

комендации по их выбору [3]. Установлено, что из восьми s-боксов три не обладают
свойством 2 (наличие неподвижных точек); у всех s-боксов ps = 4/16.

Выводы

1. Построенное множество s-боксов размера 4×4, обладающее рядом позитивных
свойств, может быть использовано при решении задач синтеза перспективных крип-
тографических алгоритмов.

2. Созданное программное обеспечение может быть использовано для исследова-
ния s-боксов размера 4×4, используемых в различных действующих и перспективных
криптографических системах.
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CRYPTAUTOMATA: DEFINITION, CRYPTANALYSIS, EXAMPLE1

G.P. Agibalov

This conference paper is an extended abstract of a recent article in Prikladnaya
Diskretnaya Matematika (2017, No. 36), where we presented the definition of the
cryptautomata and described some cryptanalysis techniques for them. In crypto-
systems, the cryptautomata are widely used as its primitives including cryptographic
generators, s-boxes, filters, combiners, key hash functions as well as symmetric and
public-key ciphers, and digital signature schemes. A cryptautomaton is defined as a
class C of automata networks of a fixed structure N constructed by means of the
series, parallel, and feedback connection operations over initial finite automata (finite
state machines) with transition and output functions taken from some predetermined
functional classes. A cryptautomaton key can include initial states, transition and
output functions of some components in N . Choosing a certain key k produces a
certain network Nk from C to be a new cryptographic algorithm. In case of invertibility
of Nk, this algorithm can be used for encryption. The operation (functioning) of any
network Nk in the discrete time is described by the canonical system of equations of
its automaton. The structure of Nk is described by the union of canonical systems
of equations of its components. The cryptanalysis problems for a cryptautomaton are
considered as the problems of solving the operational or structural system of equations
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of Nk with the corresponding unknowns that are key k variables and (or) plaintexts
(input sequences). For solving such a system E, the method DSS is used. It is the
iteration of the following three actions: 1) E is Divided into subsystems E

� and E
��,

where E
� is easy solvable; 2) E

� is Solved; 3) the solutions of E
� are Substituted

into E
�� by turns. The definition and cryptanalysis of a cryptautomaton are illustrated

by giving the example of the autonomous alternating control cryptautomaton. It is a
generalization of the LFSR-based cryptographic alternating step generator. We present
a number of attacks on this cryptautomaton with the states or output functions of its
components as a key.
Keywords: finite automaton, automata network, cryptautomaton, alternating control

cryptautomaton, cryptanalysis, “divide-and-solve-and-substitute”, partially defined function

completion.

1. Definition

In this paper, we will present an extended abstract of the recent article [1] devoted to
the definition of the cryptautomata and to description of some cryptanalysis techniques for
them. Here is a formal mathematical definition: a cryptautomaton is a three-tuple (C, I,K),
where C, the network class, is a finite set of possible automaton networks; I, the keyplace,
is a finite set of possible key variables, and K, the keyspace, is a finite set of possible
keys. The automaton networks under consideration are constructed of some initial finite
automata (finite-state machines) by using the operations of series, parallel, and feedback
connections, and they themselves uniquely define some initial finite automata.

The set C is completely defined by any automaton network N ∈ C and consists of all the
automaton networks that can only differ from N in some parameters of some components.
For every such a parameter, the set of these components is presented in the keyplace I, and
the parameter itself — in the keyspace K as a part of a key. Here, by the parameters of an
automaton Ai = (Xi, Si, Yi, gi, fi, si(1)) in N , we mean its initial state si(1), its transition
function gi : Xi×Si → Si, and its output function fi : Xi×Si → Yi. It is supposed, that the
parameters si(1), gi, and fi are elements of, respectively, the set Si of states in Ai, a class Gi

of some functions g : Xi × Si → Si, and a class Fi of some functions f : Xi × Si → Yi.
So, if N consists of r components Ai, i ∈ {1, 2, . . . , r}, then the keyplace I is the three-

tuple of sets Is, It, and Io that are subsets of {1, 2, . . . , r}, and the keyspace K of the
cryptautomaton is the Cartesian product

�
of sets Ks, Kt, and Ko, where Ks =

�

i∈Is

Si,

Kt =
�

i∈It

Gi, and Ko =
�

i∈Io

Fi. Thus, a key in K is a three-tuple ksktko, where ks ∈ Ks,

kt ∈ Kt, and ko ∈ Ko, that is, a cryptautomaton key can be composed of initial states
of some components in N , of transition functions in Gi for some i ∈ {1, 2, . . . , r}, and of
output functions in Fj for some j ∈ {1, 2, . . . , r}.

Each key k in K defines a certain automaton network Nk in C and C = {Nk : k∈K}.
The operation (functioning) of this network Nk in discrete time is described by the canonical
system of equations of its automaton as well as by the union of canonical systems of
equations describing the operations of components in Nk. The second system of equations
also describes the structure (circuit) of Nk. In case that, for any k, the automaton of Nk is
invertible, the cryptautomaton (C, I,K) is a cipher.

2. Cryptanalysis

There are many different cryptanalysis problems for a given cryptautomaton (C, I,K).
Some of them are put as follows: given a finite output sequence γ of a network Nk in C and,
possibly, an input sequence α which Nk transforms into γ, determine the key k and (or) the
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sequence α. For solving these problems, we offer to solve the following two mathematical
problems:

1) finding solutions of the systems of equations describing the operation or structure of
the automaton networks in the network class C;

2) completing partially defined functions in a functional class, that is, for given a
partially defined function φ and a class Φ of completely defined functions, it is required
to find a function in Φ which coincides with φ on its domain.

In fact, the second problem is connected with the first one and appears after partial
determining unknown output or transition functions of some components in the network Nk

by solving its system of equations.
The system E of equations of any automaton network is recursively easy solvable (r.e.s.),

that is, it has a nonempty subsystem E1 ⊆ E with a small effective subset U of unknowns
such that assigning any possible values to them makes E1 to be easily solvable and the
subsystem E2 = E \E1 becomes r.e.s. after substitution of any solution of E1 into it. Thus,
every solution of E can be computed by the method DSS [1, 2], consisting of three repeated
actions: Divide E into E1 and E2, Solve E1, and Substitute solutions of E1 into E2.

In [1], we illustrated the method DSS by solving canonical systems of equations of
finite automata, series, parallel, and feedback automaton networks over the field F2 of
two elements. The solution problem was the following one: given an output sequence
of an automaton network N , find the input sequences of N . Besides, we defined an
autonomous cryptautomaton with alternating control over F2 (that is a generalization of
the cryptographic alternating step generator on LFSRs [3]) and illustrated the method
DSS and the problem of completing partially defined functions by several attacks on this
cryptautomaton with some different keyplaces I and corresponding keyspaces K.

3. Autonomous alternating control cryptautomaton

Let Σ be an autonomous cryptautomaton (C, I,K). It is called an alternating control

cryptautomaton if each automaton network N in C is a network with alternating control,
that is, N is a series-parallel connection of three automata: an autonomous automaton
A1, A1 = (Fm1

2
,F2, g1, f1, s1(1)), and two unautonomous automata A2 and A3, Ai = (F2,

F
mi

2
,F2, gi, fi, si(1)), i ∈ {2, 3}, both controlled by A1 in such a way that, for any their input

symbol y1 (produced on the output of A1) and states s2 и s3 respectively, the alternation

condition g2(y1, s2) = s2 ⇔ g3(y1, s3) �= s3 is true, and both producing output symbols y2
and y3 respectively with the sum y2 ⊕ y3 mod 2 on the output of N . For each i ∈ {1, 2, 3},
it is supposed that Si = F

mi

2
, gi ∈ Gi, and fi ∈ Fi, where Gi and Fi are some functional

classes. The following is the canonical system of equations of the network N with alternating
control:

y1(t) = f1(s1(t)),

s1(t+ 1) = g1(s1(t)),

y2(t) = f2(y1(t), s2(t)),

s2(t+ 1) = g2(y1(t), s2(t)),

y3(t) = f3(y1(t), s3(t)),

s3(t+ 1) = g3(y1(t), s3(t)),

y(t) = y2(t)⊕ y3(t), t � 1,

s1(1)s2(1)s3(1) — initial state,
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where the first two equations describe the automaton A1, the next five equations — the
parallel subnetwork N � of the automata A2 and A3.

Here, for cryptanalysis of an alternating control cryptautomaton Σ, we describe some
attacks on it with a known output sequence γ = y(1)y(2) . . . y(l), l � 1, in order to
determine its key k by using the method DSS in solving the canonical system of equations of
a network Nk in C and by completing partially defined output functions of its components
in their classes. The attacks depend on the type of keyplace I in Σ.

1. Is = {1}, It = Io = ∅; Ks = S1 = F
m1

2
, Kt = Ko = ∅; K = Ks = F

m1

2
; k = s1(1) ∈ K.

A t t a c k 1: 1) given γ on the output of Σ, use the method DSS and compute the input
sequences of parallel subnetwork N � that are, simultaneously, the output sequences of the
automaton A1; 2) for each of these sequences, find an initial state s1(1) of the automaton A1

by an exhaustive key search.
Computational complexity of the attack equals 2m1 .
2. Is = {1, 2}, It = Io = ∅; Ks = S1 × S2 = F

m1

2
× F

m2

2
, Kt = Ko = ∅; K = Ks =

= F
m1

2
× F

m2

2
; k = s1(1)s2(1) ∈ K.

In this case, the key of Σ is computed by a meet-in-the-middle attack. In advance, before
the attack, for each possible value a of unknown s1(1), compute s1(t + 1) = g1(s1(t)) and
y1(t) = f1(s1(t)) for t ∈ {1, 2, . . . , l} and s1(1) = a and store a in memory by address
H(y1(1)y1(2) . . . y1(l)), where H : Fl

2
→ Fm1

2
is a hash function.

A t t a c k 2: given γ on the output of Σ, use the method DSS and compute the input
sequences of subnetwork N � for different values of s2(1) chosen unless, for some its value b,
a sequence β will be obtained on the input of N � such that there is a value a of s1(1) in
memory by address H(β); in this case the pair (a, b) is taken for the result — the key k.

Computational complexity of the attack equals 2m2 .
Remark: the attack remains valid after exchanging roles of A2 and A3 in it.
3. Is = {1, 2, 3}, It = Io = ∅; Ks = S1 × S2 × S3 = F

m1

2
× F

m2

2
× Fm3

2
, Kt = Ko =

= ∅; K = Ks = F
m1

2
× F

m2

2
× F

m3

2
; k = s1(1)s2(1)s3(1) ∈ K, and the set of variables

y1(1), y1(2), . . . , y1(l) is a linearization set in the system of equations E � of the subnetwork N �

of the network N .
A t t a c k 3: for each s1(1) in S1, 1) compute s1(t+1) = g1(s1(t)) and y1(t) = f1(s1(t))

for t ∈ {1, 2, . . . , l}; 2) execute the linearization attack on E �, namely: substitute the values
y1(1), y1(2), . . . , y1(l) into E �, solve the obtained system E �� of linear equations by Gauss
method and find the values of unknowns s2(t) и s3(t), t ∈ {1, 2, . . . , l}; 3) from each solution
of E �� satisfying the alternation condition for all t, 1 � t � l, take the values of s2(1)
and s3(1) and fix the three-tuple (s1(1)s2(1)s3(1)) as one of the values of the key k.

Computational complexity of the attack equals 2m1 .
Remark. So we have proved that in this case, the real key of the alternating control

cryptautomaton is the initial state of the controlling automaton and its estending by means
of initiall states of controlled automata doesn’t increase the cryptographic security of the
cryptautomaton. For the LFSR-based cryptographic alternating step generators, this fact
was shown earlier in [4].

4. Is = It = ∅, Io = {1}; Ks = Kt = ∅, Ko = F1; K = Ko = F1; k = f1 ∈ K.
A t t a c k 4: 1) compute s1(t + 1) = g1(s1(t)), t ∈ {1, 2, . . . , l − 1}; 2) as in Attack 1,

step 1, compute the input sequences of subnetwork N � of the network N by method
DSS; 3) by any of them y1(1)y1(2) . . . y1(l) and the internal sequence s1(1)s1(2) . . . s1(l)
of the automaton A1, construct a partially defined function f �

1
as f �

1
(s1(t)) = y1(t) for

t ∈ {1, 2, . . . , l}; 4) in the class F1, find a function f1 which is an extension of f �

1
and, in

case of success of this operation, give f1 as one of the values of the key k.
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Remark: to obtain all the values of the key k under which the cryptautomaton
produces γ, the construction in the step 3 is executed for every sequence computed in
the step 2.

5. Is = It = ∅, Io = {2}; Ks = Kt = ∅, Ko = F2; K = Ko = F2; k = f2 ∈ K.
A t t a c k 5: 1) compute s1(t + 1) = g1(s1(t)), y1(t) = f1(s1(t)) in the automaton A1

and s3(t+1) = g3(y1(t), s3(t)), y3(t) = f3(y1, s3(t)) in the automaton A3 for t ∈ {1, 2, . . . , l};
2) construct a partially defined function f �

2
as f �

2
(y1(t), s2(t)) = y(t) ⊕ y3(t) for t ∈

{1, 2, . . . , l}; 3) in the class F2, find a function f2 which is an extension of f �

2
and, in

case of success of this operation, give f2 as one of the values of the key k.
Remark: the attack remains valid after exchanging roles of A2 and A3 in it.
6. Is = It = ∅, Io = {2, 3}; Ks = Kt = ∅, Ko = F2 × F3; K = Ko = F2 × F3;

k = f2f3 ∈ K.
A t t a c k 6: 1) compute s1(t + 1) = g1(s1(t)), y1(t) = f1(s1(t)) in the automaton A1

for t ∈ {1, 2, . . . , l}, s2(t + 1) = g2(y1(t), s2(t)) in the automaton A2, and s3(t + 1) =
= g3(y1(t), s3(t)) in the automaton A3 for t ∈ {1, 2, . . . , l − 1}; 2) compute 2l pairs of
sequences y2j(1)y2j(2) . . . y2j(l), y3j(1)y3j(2) . . . y3j(l), j ∈ {1, 2, . . . , l}, such that y2j(t) =
= y3j(t) = 0 ∨ y2j(t) = y3j(t) = 1 if y(t) = 0 or (y2j(t) = 0, y3j(t) = 1) ∨ (y2j(t) = 1,
y3j(t) = 0) if y(t) = 1; 3) for each j ∈ {1, 2, . . . , l}, construct partial Boolean functions f2j
and f3j as f2j(y1(t), s2(t)) = y2j(t) and f3j(y1(t), s3(t)) = y3j(t), t ∈ {1, 2, . . . , l}; 4) in the
classes F2 and F3, find some functions f2 and f3 respectively which are the extensions of f2j
and f3j respectively and, in case of success of this operation, give f2f3 as one of the values
of the key k.

Computational complexity of the attack equals 2l.
Remark: if, in the step 4 for every j, at least one of the functions f2j or f3j is not

completed in the corresponding class, F2 or F3, then the cryptanalysis problem for the
cryptautomaton Σ hasn’t solution in this case.
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