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Kazk 1prit u3 BocbMu $-00KcoB pasmepa 6x4 aaropurma DES MoxKHO 1IpeicTaBuTh Kak 32
s-00kca paszmepa 4 X4 ¢ MoMOIILI0 (PUKCAII OUTOB @1 U G, YIPABJIAIONIIX BHIODOPOM OJTHOM
U3 9eTHIPEX IMOJICTAHOBOK cremneHu 16 s-O0kca, rje aj, ds, ..., ag — OUTBI BXOJIHOTO HAOOpa
s-6okca. IIpu pukcanum npyrux 6MToB OMEKTUBHOCTD $-OOKCa He obecriedeHa. YCTaHOBJIEHO,
910 6 $-6OKCOB He 06/1a/1a10T CBOMCTBOM 2 (HaIMUne HEMOIBUKHBIX TOUEK ). Psiji s-60KCOB He
obusaiator ceoiicrBoM 4: y 16 s-6okcoB ps = 8/16, y 14 —ps = 6/16, u umeercst 110 OJHOMY
s-00KCy, y KOTOpBIX ps = 4/16 u 10/16.

B amropurme I'OCT 28147-89 ucrnosibs3yercs 8 s-00KcoB pasmepa 4x4, mMeTcs pe-
KOMEH/IAIUK 110 uX BbIOODY [3]. YeraHoBseHo, 9To U3 BochbME $-O00KCOB TpU He 06JIa/1a10T
CBOMCTBOM 2 (HasIM4ne HEIO/BIKHBIX TOUEK); y BceX s-O0KcoB p, = 4/16.

BriBoapl

1. ITocTpoenHOEe MHOXKECTBO S-O0KCOB pasmepa 4x4, obJiajiarorniee psjioM TO3UTHBHBIX
CBOIU/ICTB, MOZKET 6bITb HCIIOJIb30BaHO IIPpU PEIICHUN 3a/a4 CUHTe3a IIEePCIIEKTHUBHBIX KPHII-
TorpadpuiecKnx ajaropuTMoB.

2. CozmanHoe mporpaMMHoe obeciiedeHrne MOXKeT OBITh HCIIOJIb30BAHO JIJI MCCJIeI0Ba~
HUA $-O0KCOB paszmepa 4 x4, UCIOJIb3YEeMbIX B Pa3IUYIHBIX JCHCTBYIOMIIX U IIEPCIEKTUBHBIX
KpUnrorpahuIecKux CUCTeMax.
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CRYPTAUTOMATA: DEFINITION, CRYPTANALYSIS, EXAMPLE!
G. P. Agibalov

This conference paper is an extended abstract of a recent article in Prikladnaya
Diskretnaya Matematika (2017, No.36), where we presented the definition of the
cryptautomata and described some cryptanalysis techniques for them. In crypto-
systems, the cryptautomata are widely used as its primitives including cryptographic
generators, s-boxes, filters, combiners, key hash functions as well as symmetric and
public-key ciphers, and digital signature schemes. A cryptautomaton is defined as a
class C of automata networks of a fixed structure N constructed by means of the
series, parallel, and feedback connection operations over initial finite automata (finite
state machines) with transition and output functions taken from some predetermined
functional classes. A cryptautomaton key can include initial states, transition and
output functions of some components in N. Choosing a certain key k produces a
certain network N from C to be a new cryptographic algorithm. In case of invertibility
of N, this algorithm can be used for encryption. The operation (functioning) of any
network N in the discrete time is described by the canonical system of equations of
its automaton. The structure of Ny is described by the union of canonical systems
of equations of its components. The cryptanalysis problems for a cryptautomaton are
considered as the problems of solving the operational or structural system of equations
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of Nj with the corresponding unknowns that are key k variables and (or) plaintexts
(input sequences). For solving such a system FE, the method DSS is used. It is the
iteration of the following three actions: 1) E is Divided into subsystems E’ and E”,
where E’ is easy solvable; 2) E’ is Solved; 3) the solutions of E’ are Substituted
into E” by turns. The definition and cryptanalysis of a cryptautomaton are illustrated
by giving the example of the autonomous alternating control cryptautomaton. It is a
generalization of the LFSR-based cryptographic alternating step generator. We present
a number of attacks on this cryptautomaton with the states or output functions of its
components as a key.

Keywords: finite automaton, automata network, cryptautomaton, alternating control
cryptautomaton, cryptanalysis, “divide-and-solve-and-substitute”, partially defined function
completion.

1. Definition

In this paper, we will present an extended abstract of the recent article [1| devoted to
the definition of the cryptautomata and to description of some cryptanalysis techniques for
them. Here is a formal mathematical definition: a cryptautomaton is a three-tuple (C, I, K),
where C, the network class, is a finite set of possible automaton networks; I, the keyplace,
is a finite set of possible key variables, and K, the keyspace, is a finite set of possible
keys. The automaton networks under consideration are constructed of some initial finite
automata (finite-state machines) by using the operations of series, parallel, and feedback
connections, and they themselves uniquely define some initial finite automata.

The set C'is completely defined by any automaton network N € C' and consists of all the
automaton networks that can only differ from /N in some parameters of some components.
For every such a parameter, the set of these components is presented in the keyplace I, and
the parameter itself —in the keyspace K as a part of a key. Here, by the parameters of an
automaton A; = (X;,S;,Y;, g;, fi,s:(1)) in N, we mean its initial state s;(1), its transition
function g; : X; X .S; — 5;, and its output function f; : X; x.S; — Y;. It is supposed, that the
parameters s;(1), g;, and f; are elements of, respectively, the set .S; of states in A;, a class G;
of some functions g : X; x S; — 5;, and a class F; of some functions f : X; x S; — V;.

So, if N consists of r components A;, i € {1,2,...,r}, then the keyplace I is the three-
tuple of sets I, I, and I, that are subsets of {1,2,...,r}, and the keyspace K of the

cryptautomaton is the Cartesian product [[ of sets K, K, and K,, where Ky = [] S,
iely
Ky = ][] Gi, and K, = [] F;. Thus, a key in K is a three-tuple kskik,, where ks € Kj,
iEIt ’iEIO
k. € K, and k, € K,, that is, a cryptautomaton key can be composed of initial states

of some components in N, of transition functions in G; for some i € {1,2,...,r}, and of
output functions in Fj for some j € {1,2,...,r}.

Each key k in K defines a certain automaton network Ny in C' and C' = {N}, : ke K}.
The operation (functioning) of this network NNy in discrete time is described by the canonical
system of equations of its automaton as well as by the union of canonical systems of
equations describing the operations of components in N,. The second system of equations
also describes the structure (circuit) of Ni. In case that, for any &, the automaton of Ny is
invertible, the cryptautomaton (C, I, K) is a cipher.

2. Cryptanalysis

There are many different cryptanalysis problems for a given cryptautomaton (C, I, K).
Some of them are put as follows: given a finite output sequence v of a network Ny in C' and,
possibly, an input sequence o which Ny, transforms into 7, determine the key & and (or) the
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sequence «. For solving these problems, we offer to solve the following two mathematical
problems:

1) finding solutions of the systems of equations describing the operation or structure of
the automaton networks in the network class C;

2) completing partially defined functions in a functional class, that is, for given a
partially defined function ¢ and a class ® of completely defined functions, it is required
to find a function in ® which coincides with ¢ on its domain.

In fact, the second problem is connected with the first one and appears after partial
determining unknown output or transition functions of some components in the network Ny
by solving its system of equations.

The system E of equations of any automaton network is recursively easy solvable (r.e.s.),
that is, it has a nonempty subsystem F; C E with a small effective subset U of unknowns
such that assigning any possible values to them makes E; to be easily solvable and the
subsystem Ey = E'\ E; becomes r.e.s. after substitution of any solution of F; into it. Thus,
every solution of F can be computed by the method DSS [1, 2|, consisting of three repeated
actions: Divide F into E; and FE,, Solve E;, and Substitute solutions of F; into Es.

In [1], we illustrated the method DSS by solving canonical systems of equations of
finite automata, series, parallel, and feedback automaton networks over the field Fy of
two elements. The solution problem was the following one: given an output sequence
of an automaton network N, find the input sequences of N. Besides, we defined an
autonomous cryptautomaton with alternating control over Fy (that is a generalization of
the cryptographic alternating step generator on LFSRs [3]) and illustrated the method
DSS and the problem of completing partially defined functions by several attacks on this
cryptautomaton with some different keyplaces I and corresponding keyspaces K.

3. Autonomous alternating control cryptautomaton

Let ¥ be an autonomous cryptautomaton (C, I, K). It is called an alternating control
cryptautomaton if each automaton network N in C is a network with alternating control,
that is, IV is a series-parallel connection of three automata: an autonomous automaton
Ay, Ay = (F3 Ty, g1, f1,51(1)), and two unautonomous automata A, and As, A; = (IFa,
F3' o, g5, fiysi(1)), i € {2,3}, both controlled by A; in such a way that, for any their input
symbol y; (produced on the output of A;) and states sy u s3 respectively, the alternation
condition ga(y1, s2) = S2 < g3(y1, S3) # s3 is true, and both producing output symbols ys
and y3 respectively with the sum ys @ y3 mod 2 on the output of N. For each i € {1,2, 3},
it is supposed that S; = Fy", g; € G;, and f; € F;, where GG; and F; are some functional
classes. The following is the canonical system of equations of the network N with alternating
control:

yi(t) = fi(s1(1)),
si(t+1) = gi(s1(1)),
Y2(t) = fayi(t), s2(t)),
2+ 1) = g2(y1(t), 52(2)),
( (
( )

»
+

ys(t) = f3(yr(t), s3(t)),

s3(t +1) = gs(y1(t), s3(t)),
y(t) = pa(t) ®ya(t), t=>1,
s1(1)s2(1)s3(1) — initial state,
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where the first two equations describe the automaton A;, the next five equations —the
parallel subnetwork N’ of the automata A, and As.

Here, for cryptanalysis of an alternating control cryptautomaton ¥, we describe some
attacks on it with a known output sequence v = y(1)y(2)...y(l), I > 1, in order to
determine its key & by using the method DSS in solving the canonical system of equations of
a network N in C' and by completing partially defined output functions of its components
in their classes. The attacks depend on the type of keyplace I in X.

LI, ={1},=1,=9;K,=8=F" K=K, =2; K=K, =F"; k=5(1) € K.

Attack 1:1) given y on the output of 3, use the method DSS and compute the input
sequences of parallel subnetwork N’ that are, simultaneously, the output sequences of the
automaton Aj; 2) for each of these sequences, find an initial state s1(1) of the automaton A;
by an exhaustive key search.

Computational complexity of the attack equals 2.

2., ={1,2}, [y =1, =2; Kg = 5 xSy =F" xFy? Ky = K, =2, K = K, =
=T x F32; k= s1(1)s9(1) € K.

In this case, the key of X is computed by a meet-in-the-middle attack. In advance, before
the attack, for each possible value a of unknown s;(1), compute s;(t + 1) = g1(s1(¢)) and
y1(t) = fi(s1(t)) for t € {1,2,...,1} and s;(1) = a and store a in memory by address
H(yy(D)y1(2) ... y1(1)), where H : F, — F3' is a hash function.

At tack 2:given v on the output of 3, use the method DSS and compute the input
sequences of subnetwork N’ for different values of s5(1) chosen unless, for some its value b,
a sequence  will be obtained on the input of N’ such that there is a value a of s;(1) in
memory by address H(f3); in this case the pair (a,b) is taken for the result — the key k.

Computational complexity of the attack equals 2™2.

Remark: the attack remains valid after exchanging roles of Ay and Aj in it.

3. I, ={1,2,3}, Iy, = I, = @; K, = 51 x Sy x S3 = Fy" x Fo?x Fo* K, = K, =
=o; K = Ky, = Fi" x F)” x F3"; k = s1(1)s2(1)s3(1) € K, and the set of variables
y1(1),41(2),...,y1(]) is a linearization set in the system of equations E’ of the subnetwork N’
of the network N.

Attack 3:foreach si(1)in Sy, 1) compute s;(t+1) = g1(s1(t)) and y1(t) = fi(s1(t))
for t € {1,2,...,1}; 2) execute the linearization attack on E’, namely: substitute the values
y1(1),y1(2),...,y1(l) into E’, solve the obtained system E” of linear equations by Gauss
method and find the values of unknowns so(t) u s3(¢), t € {1,2,...,1}; 3) from each solution
of E” satisfying the alternation condition for all ¢, 1 < ¢ < [, take the values of s9(1)
and s3(1) and fix the three-tuple (s1(1)s2(1)s3(1)) as one of the values of the key k.

Computational complexity of the attack equals 2.

Remark. So we have proved that in this case, the real key of the alternating control
cryptautomaton is the initial state of the controlling automaton and its estending by means
of initiall states of controlled automata doesn’t increase the cryptographic security of the
cryptautomaton. For the LFSR-based cryptographic alternating step generators, this fact
was shown earlier in [4].

4. I,=5L=0,1,={1}; Ki,=K =9, K,=F; K=K, =F; k= f, € K.

Attack 4:1) compute si1(t +1) = gi1(s1(¢)), t € {1,2,...,1 —1}; 2) as in Attack1,
step 1, compute the input sequences of subnetwork N’ of the network N by method
DSS; 3) by any of them y;(1)y1(2)...v1(l) and the internal sequence s1(1)s1(2)...s1(I)
of the automaton Aj, construct a partially defined function f| as fi(s1(t)) = yi(t) for
t € {1,2,...,1}; 4) in the class F}, find a function f; which is an extension of f{ and, in
case of success of this operation, give f; as one of the values of the key k.
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Remark: to obtain all the values of the key k under which the cryptautomaton
produces 7, the construction in the step 3 is executed for every sequence computed in
the step 2.

5., =5L=2,1,={2}; Ki=K=9, K, =Fy;, K=K, =Fy; k= f, € K.

Attack 5 1) compute si(t+1) = gi(s1(t)), y1(t) = fi(s1(t)) in the automaton A,
and s3(t+1) = g3(v1(t), s3(t)), ys(t) = f3(y1, s3(t)) in the automaton Az for t € {1,2,...,1};
2) construct a partially defined function f} as f(yi(t),s2(t)) = y(t) & ys(t) for t €
{1,2,...,1}; 3) in the class Fy, find a function f, which is an extension of f) and, in
case of success of this operation, give f5 as one of the values of the key k.

Remark: the attack remains valid after exchanging roles of A, and Az in it.

6. I, =1 = 9,1, =1{2,3}; K, = Ky = 9, K, = F, x F3; K = K, = F;, x Fj;
k=Jfaufs € K.

Attack 6:1) compute si1(t +1) = gi(s1(t)), y1(t) = fi(s1(t)) in the automaton A,
for t € {1,2,...,1}, sa(t + 1) = g2(y1(t), s2(¢)) in the automaton As, and s3(t + 1) =
= g3(y1(t), s3(t)) in the automaton Az for t € {1,2,...,1 — 1}; 2) compute 2' pairs of
sequences Ya;(1)y2;(2) ... y2; (1), ys3;(1)ys;(2) ... ys;(1), j € {1,2,...,1}, such that ys;(t) =
= y3j(t) = 0V yz;(t) = y3;(t) = 1if y(t) = 0 or (y2;(¢) = 0, ys;(t) = 1) V (ye;(t) = 1,
ys;(t) = 0) if y(t) = 1; 3) for each j € {1,2,...,1}, construct partial Boolean functions fs;
and f3; as fo;(y1(t), s2(t)) = ya;(t) and f3;(11(2), s3(t)) = w3;(¢), t € {1,2,...,1}; 4) in the
classes F5 and Fj, find some functions f, and f3 respectively which are the extensions of f;
and f3; respectively and, in case of success of this operation, give f5f3 as one of the values
of the key k.

Computational complexity of the attack equals 2!.

Remark: if, in the step 4 for every j, at least one of the functions fy; or f3; is not
completed in the corresponding class, Fy or Fj3, then the cryptanalysis problem for the
cryptautomaton ¥ hasn’t solution in this case.
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