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Equations over finite linearly ordered semilattices are studied. It is assumed that
the order of a semilattice is not less than the number of variables in an equation.
For any equation t(X) = s(X), we find irreducible components of its solution set.
We also compute the average number Irr(n) of irreducible components for all equations

in n variables. It turns out that Irr(n) and the function
4

9
n! are asymptotically

equivalent.
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Introduction
This paper is the sequel of [1], and we recall below the general problems studied in both

papers.
Following [2], one can define a notion of an equation over a linearly ordered semilattice

Ll = {a1, a2, . . . , al} (the formal definition of an equation is given below in the paper).
A set Y is algebraic if it is the solution set for a system of equations over Ll. Let us
consider an equation t(X) = s(X) in n variables over Ll, and let Y be the solution set

for t(X) = s(X). One can find algebraic sets Y1, Y2, . . . , Ym such that Y =
m⋃
i=1

Yi. One can

decompose each Yi into a union of other algebraic sets, etc. This process terminates after a
finite number of steps and gives a decomposition of Y into a union of irreducible algebraic
sets Yi (the sets Yi are called the irreducible components of Y ). Roughly speaking, irreducible
algebraic sets are “atoms” which form any algebraic set. The size and the number of such
“atoms” are important characteristics of the semilattice Ll, since there are connections
between irreducible algebraic sets and universal theory of linearly ordered semilattices [2].
Moreover, the number of irreducible components was involved in the estimation of lower
bounds of algorithm complexity (see [3] for more details).

In the previous paper [1], we studied equations t(X) = s(X) with n > l, i.e. the number
of variables occurring in t(X) = s(X) is more than the order of the semilattice Ll. In [1], we
also studied algebraic sets and irreducible components and computed the average number
of irreducible components of the solution sets for equations in n variables.

In this paper, we assume n 6 l (i.e. the order of the semilattice Ll is not less than
the number of variables in t(X) = s(X)) and study the similar problems. Precisely, for any
equation t(X) = s(X) in n variables, we study the number and properties of its solution set
irreducible components, and for all equations in n variables, we count the average number
Irr(n) of irreducible components of the solution sets.

Note that the cases n > l and n 6 l need a completely different techniques, and we can
not directly use the results of [1] in the current paper. Moreover, almost all the results of [1]
do not hold for the current case.

1The author was supported by the RSF-grant 17-11-01117.
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1. Main definitions
Let Ll = {a1, a2, . . . , al} be the linearly ordered semilattice of l elements and a1 < a2 <

< . . . < al. The multiplication in Ll is defined by ai · aj = amin(i,j). Obviously, the linear
order on Ll can be expressed by the multiplication as follows

ai 6 aj ⇔ aiaj = ai.

A term t(X) in variables from X = {x1, x2, . . . , xn} is a commutative word in letters xi.
Let Var(t) be the set of all variables occurring in a term t(X). Following [2], an equation

is an equality of some terms t(X) = s(X). Below we consider inequalities t(X) 6 s(X)
as equations, since t(X) 6 s(X) is the short form of t(X)s(X) = t(X). Notice that we
consider equations as ordered pairs of terms, i.e. the expressions t(X) = s(X) and s(X) =
= t(X) are different equations. Let Eq(n) denote the set of all equations in variables from
X = {x1, x2, . . . , xn}. We assume that each equation t(X) = s(X) in Eq(n) contains the
occurrences of all variables x1, x2, . . . , xn. An equation t(X) = s(X) in Eq(n) is said to
be a (k1, k2)-equation if |Var(t) \ Var(s)| = k1 and |Var(s) \ Var(t)| = k2. For example,
x1x2 = x1x3x4 is a (1, 2)-equation. Let Eq(k1, k2, n) be the set of all (k1, k2)-equations in
Eq(n). Obviously,

Eq(n) =
⋃

(k1,k2)∈Kn
Eq(k1, k2, n), (1)

where Kn = {(k1, k2) : k1 + k2 6 n} \ {(0, n), (n, 0)}.
Each equation t(X) = s(X) in Eq(k1, k2, n) is uniquely defined by k1 variables in the

left part and by k2 other variables in the right part (the other n− k1 − k2 variables should
occur in both parts of the equation). Thus,

#Eq(k1, k2, n) =

(
n

k1

)(
n− k1

k2

)
.

By (1), one can compute that #Eq(n) = 3n − 2.
Remark 1. Recall that we consider only equations t(X) = s(X) with n 6 l, i.e.

the number of variables occurring in t(X) = s(X) is not more than the order of the
semilattice Ll.

A point P ∈ Lnl is a solution of an equation t(X) = s(X) if t(P ) and s(P ) define the
same element in the semilattice Ll. By the properties of linearly ordered semilattices, a
point P = (p1, p2, . . . , pn) is a solution of t(X) = s(X) iff there exist variables xi in Var(t)
and xj in Var(s) such that pi = pj and pi 6 pk for all k, 1 6 k 6 n. The set of all solutions
of an equation t(X) = s(X) is denoted by V(t(X) = s(X)).

An arbitrary set of equations is called a system. The set V(S) of all solutions of a system
S = {ti(X) = si(X) : i ∈ I} is defined as

⋂
i∈I

V(ti(X) = si(X)). A subset Y of the set Lnl is

called algebraic over Ll if there exists a system S in n variables with V(S) = Y . An algebraic
set Y is irreducible if Y is not a proper finite union of other algebraic sets.

Proposition 1 [1, Proposition 2.2]. Any algebraic set Y over Ll is a finite union of
irreducible sets, that is,

Y = Y1 ∪ Y2 ∪ . . . ∪ Ym, (2)

where Yi * Yj for all i and j such that i 6= j, and this decomposition is unique up to a
permutation of components.



On irreducible algebraic sets over linearly ordered semilattices II 51

The subsets Yi from the union (2) are called the irreducible components of Y .
Let Y be an algebraic set over Ll defined by a system S(X). One can define an

equivalence relation ∼Y over the set of all terms in variables X as follows

t(X) ∼Y s(X)⇔ t(P ) = s(P ) for any point P ∈ Y .

The set of all ∼Y -equivalence classes is called the coordinate semilattice of Y and denoted
by Γ(Y ) (see [2] for more details). The following statement describes the coordinate
semilattices of irreducible algebraic sets.

Proposition 2 [1, Proposition 2.3]. A set Y is irreducible over Ll iff Γ(Y ) is embedded
into Ll.

There are different algebraic sets over Ll with isomorphic coordinate semilattices. Such
sets are called isomorphic. For example, the following sets

Y1 = V({x1 6 x2 6 x3}), Y2 = V({x3 6 x2 6 x1})

have the isomorphic coordinate semilattices

Γ(Y1) = 〈x1, x2, x3 | x1 6 x2 6 x3〉 ∼= L3,

Γ(Y2) = 〈x1, x2, x3 | x3 6 x2 6 x1〉 ∼= L3.

Thus, Y1 and Y2 are isomorphic.

2. Example
Let n = 3, l = 3. We have exactly Eq(3) = 33 − 2 = 25 equations in three variables

over L3. The Table on the page 52 contains the information about such equations over L3.
The second column contains systems which define irreducible components of the solution
set for an equation in the first column. A cell of the table contains ↑ if an information in
this cell is similar to the cell above.

Notice that V(x1 = x2 6 x3) does not define an irreducible component for Y = V(x1x2 =
= x1x3), since V(x1 = x2 6 x3) is included into the solution set of another irreducible
component V(x1 6 x2 6 x3). Similarly, V(x3 = x1 6 x2) is not an irreducible component
for Y , since it is contained in the irreducible component V(x1 6 x3 6 x2).

It turns out that the number of irreducible components does not depend on the
semilattice order l. One can directly compute the average number of irreducible components
of algebraic sets defined by equations in three variables:

Irr(3) =
6 + 2(2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4)

25
=

72

25
= 2.88. (3)
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Equations Irreducible components (IC) Number of IC
x1x2x3 = x1x2x3 x1 6 x2 6 x3 ∪ x1 6 x3 6 x2∪ 6

∪x2 6 x1 6 x3 ∪ x2 6 x3 6 x2∪
∪x3 6 x1 6 x2 ∪ x3 6 x2 6 x1

x1 = x1x2x3, x1 6 x2 6 x3 ∪ x1 6 x3 6 x1 2
x1x2x3 = x1
x2 = x1x2x3, ↑ 2
x1x2x3 = x2
x3 = x1x2x3, ↑ 2
x1x2x3 = x3
x1 = x2x3, x1 = x2 6 x3 ∪ x1 = x3 6 x2 2
x2x3 = x1
x2 = x1x3, ↑ 2
x1x3 = x2
x3 = x1x2, ↑ 2
x1x2 = x3
x1x2 = x1x3, x1 6 x2 6 x3 ∪ x1 6 x3 6 x2∪ 3
x1x3 = x1x2 ∪x2 = x3 6 x1
x1x2 = x2x3, ↑ 3
x2x3 = x1x2
x1x3 = x2x3, ↑ 3
x2x3 = x1x3
x1x2 = x1x2x3, x1 6 x2 6 x3 ∪ x1 6 x3 6 x2∪ 4
x1x2x3 = x1x2 ∪x2 6 x1 6 x3 ∪ x2 6 x3 6 x1
x1x3 = x1x2x3, ↑ 4
x1x2x3 = x1x3
x2x3 = x1x2x3, ↑ 4
x1x2x3 = x2x3

3. Decompositions of algebraic sets
Let Y denote the solution set for an equation t(X) = s(X) over the semilattice Ll =

= {a1, a2, . . . , al}. The table on the page 52 shows that any irreducible component sorts the
variables X into some order. The following definition formalizes this property of irreducible
components.

Let σ be a permutation of the set {1, 2, . . . , n}; σ sorts the set X as follows: {xσ(1), xσ(2),
. . . , xσ(n)}, i.e. σ(i) is the i-th variable in the sorted set X. A permutation σ is called
a permutation of the first (second) kind if xσ(1) ∈ Var(t) ∩ Var(s) (respectively, xσ(2) ∈
∈ Var(t) \ Var(s), xσ(1) ∈ Var(s) \ Var(t)). Let χ(σ) ∈ {1, 2} denote the kind of a
permutation σ.

Example 1. Let us consider an algebraic set Y0 = V(x1x2 = x1x3). By the table, Y0

is the union of the following irreducible components:

Y1 = V(x1 6 x2 6 x3), Y2 = V(x1 6 x3 6 x2), Y3 = V(x2 = x3 6 x1).

The irreducible components Y1, Y2, Y3 define the following permutations:

σ1 =

(
1 2 3
1 2 3

)
, σ2 =

(
1 2 3
1 3 2

)
, σ3 =

(
1 2 3
2 3 1

)
.

Moreover, σ1 and σ2 are permutations of the first kind, whereas σ3 is of the second kind.
A permutation σ defines an algebraic set Yσ as follows:

Yσ = V

(
n−1⋃
i=1

{xσ(i) 6 xσ(i+1)}
)

(4)
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if χ(σ) = 1, and

Yσ = V

(
{xσ(1) = xσ(2)}

n−1⋃
i=2

{xσ(i) 6 xσ(i+1)}
)

(5)

if χ(σ) = 2.
Example 2. Let σ1, σ2, σ3 be permutations from Example 1. Obviously, the sets

Yσ1 , Yσ2 , Yσ3 defined by (4) and (5) coincide with the sets Y1, Y2, Y3 respectively.
Lemma 1. Let χ(σ) ∈ {1, 2}, then the set Yσ is irreducible and, moreover,

Γ(Yσ) ∼=

{
Ln, if χ(σ) = 1,

Ln−1, if χ(σ) = 2.
(6)

Proof. By the definition of a coordinate semilattice, Γ(Yσ) is generated by the elements
of {x1, x2, . . . , xn} and has the following defined relations:

xσ(1) 6 xσ(2) 6 . . . xσ(n) if χ(Yσ) = 1

and
xσ(1) = xσ(2) 6 . . . xσ(n) if χ(Yσ) = 2.

Thus, Γ(Yσ) is a linearly ordered semilattice, and (6) holds. By Proposition 2, the set Yσ is
irreducible.

The following lemma gives the irreducible decomposition of an algebraic set Y =
= V(t(X) = s(X)).

Lemma 2. An algebraic set Y = V(t(X) = s(X)) is a union

Y =
⋃

χ(σ)∈{1,2}
Yσ. (7)

Proof. Suppose P = (p1, p2, . . . , pn) ∈ Y . Let us sort pi in the ascending order

pσ(1) 6 pσ(2) 6 . . . 6 pσ(n),

where σ is a permutation of the set {1, 2, . . . , n}. We have that σ induces the sorting of the
variable set X. Obviously, we may assume that xσ(1) ∈ Var(t), otherwise the properties
of Ll provide the existence of a variable xσ(i) ∈ Var(t) such that pσ(i) = pσ(1), and we can
swap the values σ(1) and σ(i).

For example, the point P = (a2, a1, a1) ∈ V(x1x2 = x1x3) defines σ(1) = 2, σ(2) = 3,
σ(3) = 1 (the permutation obtained equals σ3 from Example 1, so the point (a2, a1, a1)
belongs to the set Y3).

Since σ is defined by the inequalities between the coordinates pi, it follows P ∈ Yσ.
Now we prove that Yσ ⊆ Y for each σ. Suppose P = (p1, p2, . . . , pn) ∈ Yσ. If χ(Yσ) = 1,

then
xσ(1) ∈ Var(t) ∩ Var(s)⇒ t(P ) = s(P ) = pσ(1) ⇒ P ∈ V(t(X) = s(X)).

Otherwise (χ(Yσ) = 2), t(P ) = pσ(1), s(P ) = pσ(2), and (5) gives pσ(1) = pσ(2). Therefore
P ∈ V(t(X) = s(X)).

Lemma 3. For distinct permutations σ and σ′, we have Yσ * Yσ′ in (7).
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Proof. Let σ be a permutation of the first or second kind, and Pσ denote the following
point:

pσ(i) = ai if χ(σ) = 1,

and

pσ(i) =

{
ai, 2 6 i 6 n,

a2, i = 1,
if χ(σ) = 2.

For example, the permutations σ1, σ2, σ3 from Example 1 define the points P1 = (a1, a2, a3),
P2 = (a1, a3, a2), P3 = (a3, a2, a2), respectively.

Since Pσ preserves the order of variables, we have Pσ ∈ Yσ.
Now we can show that Pσ /∈ Yσ′ for every σ′ 6= σ (for example, each of the points

P1, P2, P3 above belongs to a unique irreducible component from Example 1:

P1 ∈ Y1 \ (Y2 ∪ Y3), P2 ∈ Y2 \ (Y1 ∪ Y3), P3 ∈ Y3 \ (Y1 ∪ Y2)).

There exist numbers i and j such that i < j, i = σ(α), j = σ(β) with α < β and i = σ′(α′),
j = σ′(β′) with α′ > β′. Hence, the inequality xi 6 xj holds in Yσ, and the inequality
xj 6 xi holds in Yσ′ . Let us consider the two possible cases:

1) If χ(σ) = 1, then pi < pj in Pσ, and we immediately obtain Pσ /∈ Yσ′ .
2) Suppose χ(σ) = 2. Assume that pi = pj = a2 (if pi < pj, we immediately obtain

Pσ /∈ Yσ′). Then α = 1, β = 2 and i = σ(1), j = σ(2) (one can similarly consider the
case i = σ(2), j = σ(1)). Hence, xi ∈ Var(t) \ Var(s), xj ∈ Var(s) \ Var(t). By the
definition of a permutation of the second kind, σ′(1) = k 6= j, and the inequality
xk 6 xj holds in Yσ′ . Let σ(γ) = k. Since α = 1, β = 2, we have γ > 2. Then pk = aγ
and pj < pk for Pσ. Thus, P /∈ Yσ′ .

The Lemma3 is proved.

According to Lemmas 1–3, we obtain the following statement.
Theorem 1. The union (7) is the irreducible decomposition of the set Y = V(t(X) =

= s(X)). The number of irreducible components is equal to the number of permutations of
the first and second kind.

4. Average number of irreducible components
One can directly compute that any (k1, k2)-equation admits

(n− k1 − k2)(n− 1)!

permutations of the first kind and
k1k2(n− 2)!

permutations of the second kind.
By Theorem 1, for a (k1, k2)-equation t(X) = s(X) the number of its irreducible

components equals

Irr(k1, k2, n) = (n− k1 − k2)(n− 1)! + k1k2(n− 2)!
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The average number of irreducible components of algebraic sets defined by equations from
Eq(n) is

Irr(n) =

∑
(k1,k2)∈Kn

#Eq(k1, k2, n)Irr(k1, k2, n)

#Eq(n)
=

=

n−1∑
k1=0

n−k1∑
k2=0

#Eq(k1, k2, n)Irr(k1, k2, n)−#Eq(0, n, n)Irr(0, n, n)

#Eq(n)
.

Since Irr(0, n, n) = (n− 0− n)(n− 1)! + 0n(n− 2)! = 0, we obtain

Irr(n) =

n−1∑
k1=0

n−k1∑
k2=0

#Eq(k1, k2, n)Irr(k1, k2, n)

#Eq(n)
.

Below we compute Irr using the following notation:

1) A
(1)
= B: an expression B is obtained from A by the binomial identity

a

(
n

a

)
= n

(
n− 1

a− 1

)
;

2) A
(2)
= B: an expression B is obtained from A by the following identity of binomial

coefficients
n∑
t=0

(
n

t

)
t2t = 2n3n−1. (8)

Here is a proof of (8):

n∑
t=0

(
n

t

)
t2t

(1)
= n

n∑
t=0

(
n− 1

t− 1

)
2t = 2n

n∑
t=0

(
n− 1

t− 1

)
2t−1 = 2n

n−1∑
u=0

(
n− 1

u

)
2u = 2n3n−1.

Let us compute Irr(n). We have that

n−1∑
k1=0

n−k1∑
k2=0

#Eq(k1, k2, n)Irr(k1, k2, n) =

=
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
(n− k1 − k2)(n− 1)! + k1k2(n− 2)!) =

= n!
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
− (n− 1)!

n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
k1−

−(n− 1)!
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
k2+(n− 2)!

n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
k1k2 = S1−S2−S3+S4,

where

S1 = n!
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
= n!

n−1∑
k1=0

(
n

k1

)
2n−k1 = n!(3n − 1),

S2 = (n− 1)!
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n−k1

k2

)
k1 = (n− 1)!

n−1∑
k1=0

(
n

k1

)
k12n−k1

(1)
=



56 A. N. Shevlyakov

(1)
= n!

n−1∑
k1=0

(
n−1

k1−1

)
2n−k1 = n!

n−2∑
t=0

(
n−1

t

)
2n−1−t = n!

(
n−1∑
t=0

(
n−1

t

)
2n−1−t − 1

)
= n!(3n−1 − 1),

S3 = (n− 1)!
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
k2

(1)
= (n− 1)!

n−1∑
k1=0

(
n

k1

)
(n− k1)

n−k1∑
k2=0

(
n− k1 − 1

k2 − 1

)
=

= (n− 1)!
n−1∑
k1=0

(
n

k1

)
(n− k1)2n−k1−1 = (n− 1)!

n∑
t=0

(
n

t

)
t2t−1 =

(n− 1)!

2

n∑
t=0

(
n

t

)
t2t

(2)
= n!3n−1,

S4 = (n− 2)!
n−1∑
k1=0

n−k1∑
k2=0

(
n

k1

)(
n− k1

k2

)
k1k2

(1)
= (n− 2)!

n−1∑
k1=0

(
n

k1

)
k1(n− k1)

n−k1∑
k2=0

(
n− k1 − 1

k2 − 1

)
=

= (n− 2)!
n−1∑
k1=0

(
n

k1

)
k1(n− k1)2n−k1−1 =

=
(n− 2)!

2

n∑
k1=0

(
n

k1

)
k1(n− k1)2n−k1 =

(n− 2)!

2

n∑
t=0

(
n

t

)
t(n− t)2t =

=
(n− 2)!

2

(
n

n∑
t=0

(
n

k1

)
t2t −

n∑
t=0

(
n

t

)
t22t
)

(2)
=

(n− 2)!

2

(
2n23n−1 − S5

)
,

S5 =
n∑
t=0

(
n

k1

)
t22t

(1)
= n

n∑
t=0

(
n− 1

t− 1

)
t2t = n

(
n∑
t=0

(
n− 1

t− 1

)
(t− 1)2t +

n∑
t=0

(
n− 1

t− 1

)
2t
)

=

= n

(
2
n∑
t=0

(
n− 1

t− 1

)
(t− 1)2t−1 +

n∑
t=0

(
n− 1

t− 1

)
2t
)

(2)
= n

(
4(n− 1)3n−2 + 2 · 3n−1

)
.

Finally, we obtain that

S1 − S2 − S3 + S4 = n!(3n − 1)− n!(3n−1 − 1)− n!3n−1+

+
(n− 2)!

2

(
2n23n−1 − n(4(n− 1)3n−2 + 2 · 3n−1)

)
=

= n!3n−1 + (n− 2)!3n−2n (3n− 2(n− 1)− 3) = n!3n−1 + n!3n−2 = 4n!3n−2,

and
Irr(n) =

4n!3n−2

3n − 2
∼ 4

9
n! (9)

Notice that the final answer does not depend on l if l 6 n. In particular, (9) gives

Irr(3) =
72

25
= 2.88 (10)

for n = 3, and (10) coincides with (3).
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