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We define a substitution block cipher C with the plaintext and ciphertext blocks
in Fn2 and with the keyspace Ks0,n(g) that is the set {f(x) : f(x) = π2(gσ2(π1(xσ1)));
σ1, σ2 ∈ Fn2 ;π1, π2 ∈ Sn}, where s0 is an integer, 1 6 s0 6 n; g : Fn2 → Fn2 is a bijec-
tive vector function g(x) = g1(x)g2(x) . . . gn(x) such that every its coordinate func-
tion gi(x) essentially depends on some si 6 s0 variables in the string x = x1x2 . . . xn;
Sn is the set of all permutations of the row (1 2 . . .n); πi and σi are the permutation
and negation operations, that is, (π = (i1i2 . . . in))⇒ (π(a1a2 . . . an) = ai1ai2 . . . ain),
(σ = b1b2 . . . bn) ⇒ ((a1a2 . . . an)σ = ab11 a

b2
2 . . . abnn ) and, for a and b in F2, ab = a

if b = 1 and ab = ¬a if b = 0. Like g, any key f in Ks0,n(g) is a bijection on Fn2 ,
f(x) = f1(x)f2(x) . . . fn(x), and every its coordinate function fi(x) essentially de-
pends on not more than s0 variables in x. The encryption of a plaintext block x
and the decryption of a ciphertext block y on the key f are defined in C as follows:
y = f(x) and x = f−1(y). Here, we suggest a known plaintext attack on C with the
threat of discovering the key f that was used. Let P1, P2, . . . , Pm be some blocks of a
plaintext, C1, C2, . . . , Cm be the corresponding blocks of a ciphertext, i.e., Cl = f(Pl)
for l = 1, 2, . . . ,m, and Pl = Pl1Pl2 . . . Pln, Cl = Cl1Cl2 . . . Cln. The object is to
determine the coordinate function fi(x) of f for each i ∈ {1, 2, . . . , n}. The sug-
gested attack consists of two steps, namely we first determine the essential variables
xi1 , . . . , xis of fi(x) and then compute a Boolean function h(xi1 , . . . , xis) such that
h(ai1 , . . . , ais) = fi(a1, . . . , an) for all n-tuples (a1a2 . . . an) ∈ Fn2 . For determining the
essential variables of fi, we construct a Boolean matrix || inf D(fi)|| with the set of
rows inf D(fi), where D(fi) = {Pl ⊕ Pj : Cli 6= Cji; l, j = 1, 2, . . . ,m}, Cli = fi(Pl),
l = 1, . . . ,m, i = 1, . . . , n, and inf D(fi) is the subset of all the minimal vectors
in D(fi). Then the numbers of essential variables for fi are the numbers of columns
in the intersection of all covers of || inf D(fi)|| with the cardinalities not more than s0,
where a cover of a Boolean matrix M is defined as a subset C of its columns such that
each row in M has ’1’ in a column in C. For computing h(xi1 , . . . , xis), we first set
h(Pli1 , . . . , Plis) = Cli for l = 1, . . . ,m and then, if hi is not yet completely determined
on Fs2, we increase the number m of known blocks (Pi, Ci) of plain- and ciphertexts
or extend hi on Fs2 in such a way that the vector function h = h1h2 . . . hn with the
completely defined coordinate functions is a bijection on Fn2 . We also describe some
special known plaintext attacks on substitution block ciphers with keyspaces being
subsets of Ks0,n(g).

Keywords: substitution ciphers, block ciphers, functional keys, cryptanalysis, known
plaintext attack, Boolean functions, essential variables, bijective functions.
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1. Introduction
In cryptography, the cryptosystems with the functional keys are widely used

as cryptographic primitives including key-stream generators, s-boxes, cryptofilters,
cryptocombiners, key hash functions as well as the symmetric and public-key ciphers, digital
signature schemes. For the author, the research, including the definition, characterisation
and cryptanalysis of such cryptosystems had beginnings at the 1960-th years. First object
of this research was the key-stream generator based on a finite autonomous automaton
(state machine) with the output function depending on a bounded number of coordinates
of the automaton state and being the key of the generator and of the corresponding stream
cipher [1, 2]. Later, two sets of symmetric iterative block ciphers with the functional keys
were proposed [3]. They were constructed according to the known cryptographic schemes
originally suggested by H. Feistel and implemented in the ciphers LUCIFER and DES
and, therefore, were named after Lucifer and Feistel respectively. At the last years, our
research in this area was related to definitions and cryptanalysis and synthesis methods
for some other kinds of cryptalgorithms with functional keys including watermarking
ciphers [4], finite automata cryptographic generators with two-valued controlled steps [5],
and cryptautomata [6] where a cryptautomaton is described by a set C of automata
networks and a set K of keys such that the choosing a key in K determines a network
in C as a specific cryptographic algorithm. In the case, when the key contains transition
and (or) output functions of some components in networks in C, we have a cryptosystem
with the functional keys. In this paper, we describe another class of cryptosystems with
functional keys, namely that named in the title.

2. Definition
Here is a general formal mathematical definition of the ciphers under consideration.

Let C be a symmetric cipher and C = (X, Y,K,E,D), where X, Y , and K are the sets of
plaintexts, ciphertexts and keys respectively and E and D are, respectively, the encryption
and decryption algorithms, E : X×K → Y ,D : Y×K → X and E(x, k) = y ⇒ D(y, k) = x
for any x ∈ X, y ∈ Y , and k ∈ K. Suppose X = Y = Fn2 , K ⊆ Bn, B is a class of
Boolean functions having some bounded both computational and capacity complexities
and depending on not more than n variables such that the mapping f : Fn2 → Fn2 , defined
for x ∈ X and f1f2 . . . fn ∈ K as f(x) = f1(x)f2(x) . . . fn(x), is a bijection. In this case,
the cipher C is said to be a substitution block cipher with functional keys, or, shortly, a
funkeysubcipher. For each block x = x1x2 . . . xn ∈ X, for each key k = f1f2 . . . fn ∈ K, and
for each ciphertext y ∈ Y in it, we have E(x, k) = f(x) and D(y, k) = f−1(y). Further,
these equalities are called the invertibility condition of C.

Note that in this definition, the bounded complexity of a function means the existence
of its practical specification and computation.

As usually, there are two general problems in the funkeysubcipher theory — synthesis
and analysis. The second problem is very typical of block ciphers and its solving ways
significantly depend on the way the first problem is solved. According to the definition
above, the first problem consists in generating a proper key space K, namely which is over
a set B of Boolean functions of a bounded complexity, satisfies the invertibility conditions,
and is great enough to withstand exhaustive search attacks. A method for solving this
problem is described in the following section.
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3. Synthesis method
Let ISn denote the set of all invertible systems each consisting of n functions in B.

Further, we also consider the systems in ISn as Boolean bijective vector functions, that
is, as substitutions on Fn2 . To synthesize a funkeysubcipher C = (Fn2 , K,Fn2 , E,D), where
K ⊆ ISn, we need generating the vector functions in ISn as keys in K. Without knowing
how to generate all of them, we propose here to generate keys in K as some members
of ISn which can be obtained by inverse and permutation operations over bits on inputs
and outputs of a chosen or given function in ISn. For this purpose, we, first, introduce some
auxiliary notations related to the permutation and inverse operations and, then, define some
subsets of functions in Bn.

Let Sn be the set of all the permutations of numbers 1, 2, . . . , n, namely Sn =
= {i1i2 . . . in : ij ∈ {1, 2, . . . , n}; j 6= k ⇒ ij 6= ik; j, k ∈ {1, 2, . . . , n}}. For any permutation
π = i1i2 . . . in ∈ Sn and any vector v = v1v2 . . . vn, let π(vj) = vij , j = 1, 2, . . . , n,
and π(v) = π(v1)π(v2) . . . π(vn) = vi1vi2 . . . vin . Also, if v1, v2, . . . , vn are Boolean values
(variables or constants) and σ = b1b2 . . . bn ∈ Fn2 , then let vσ = vb11 v

b2
2 . . . vbnn , where, for any

Boolean values a and b, ab = ¬a if b = 0 and ab = a if b = 1. We say that π(v) and vσ

are obtained by, respectively, permutation and inverse operations π and σ over v. In cases
when π = 12 . . . n or σ = 11 . . . 1, that is, the operations π or σ are identity ones, we write
π = 1 or σ = 1 respectively.

Taking any g(x1, x2, . . . , xn) in ISn, σ1, σ2 in Fn2 , and π1, π2 in Sn, we then can define a
vector function f : Fn2 → Fn2 as f(x) = π2(gσ2(π1(xσ1))), x = x1x2 . . . xn. Particularly, g(x)
can be the identical function, that is, for each i in {1, 2, . . . , n} its coordinate function gi(x)
can be equal to xi. In any case, the table of the function f(x) is obtained from the table of
the function g(x) by
— substituting columns corresponding to some variables for inverses (in σ1),
— transposing (according to π1) columns corresponding to some variables,
— substituting columns corresponding to some coordinate functions of g(x) for inverses

(in σ2), and
— transposing (according to π2) columns corresponding to some coordinate functions of

the function g(x).
In other words, f(x) is computed from the function g(x) by the inversion and transposition
of some its inputs and outputs and, like g, is of a bounded complexity and satisfies the
invertibility condition. Therefore, f(x) ∈ ISn.

Define Kn(g) = {π2(gσ2(π1(xσ1))) : σ1, σ2 ∈ Fn2 , π1, π2 ∈ Sn}. Thus, we get that Kn(g) ⊆
⊆ ISn and |Kn(g)| 6 (2nn!)2. Any subset K ⊆ Kn(g) of an exponential cardinality can be
taken as a synthesis result — the key space of a funkeysubcipher C. The following subsets
of Kn(g) are possible candidates for playing this role:
Kn(g, 1) = {g(xσ1) : σ1 ∈ Fn2}, |Kn(g, 1)| 6 2n;
Kn(g, 2) = {g(π1(x)) : π1 ∈ Sn}, |Kn(g, 2)| 6 n!;
Kn(g, 3) = {g(π1(xσ1)) : σ1 ∈ Fn2 , π1 ∈ Sn}, |Kn(g, 3)| 6 2nn!;
Kn(g, 4) = {gσ2(x) : σ2 ∈ Fn2}, |Kn(g, 4)| 6 2n;
Kn(g, 5) = {gσ2(xσ1) : σ1, σ2 ∈ Fn2}, |Kn(g, 5)| 6 22n;
Kn(g, 6) = {gσ2(π1(x)) : σ2 ∈ Fn2 , π1 ∈ Sn}, |Kn(g, 6)| 6 2nn!;
Kn(g, 7) = {gσ2(π1(xσ1)) : σ1, σ2 ∈ Fn2 , π1 ∈ Sn}, |Kn(g, 7)| 6 22nn!;
Kn(g, 8) = {π2(g(x)) : π2 ∈ Sn}, |Kn(g, 8)| 6 n!;
Kn(g, 9) = {π2(g(xσ1)) : σ1 ∈ Fn2 , π2 ∈ Sn}, |Kn(g, 9)| 6 2nn!;
Kn(g, 10) = {π2(g(π1(x))) : π2, π1 ∈ Sn}, |Kn(g, 10)| 6 (n!)2;
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Kn(g, 11) = {π2(g(π1(xσ1))) : σ1 ∈ Fn2 , π1, π2 ∈ Sn}, |Kn(g, 11)| 6 2n(n!)2;
Kn(g, 12) = {π2(gσ2(x)) : σ2 ∈ Fn2 , π2 ∈ Sn}, |Kn(g, 12)| 6 2nn!;
Kn(g, 13) = {π2(gσ2(xσ1)) : σ1, σ2 ∈ Fn2 , π2 ∈ Sn}, |Kn(g, 13)| 6 22nn!;
Kn(g, 14) = {π2(gσ2(π1(x))) : σ2 ∈ Fn2 , π1, π2 ∈ Sn}, |Kn(g, 14)| 6 2n(n!)2;
Kn(g, 15) = Kn(g).

4. Funkeysubciphers
with key functions in a bounded number of essential variables

Let s0 and n be some integers, 1 6 s0 6 n, and Bs0,n be the set of all Boolean functions
f(x1, . . . , xn) essentially depending on not more than s0 variables x1, . . . , xn, that is, for
any f : Fn2 → F2,

f(x1, . . . , xn) ∈ Bs0,n ⇔
⇔ ∃s 6 s0 ∃i1, . . . , is ∈ {1, . . . , n}∃g : Fs2 → F2(f(x1, . . . , xn) = g(xi1 , . . . , xis)).

The set of variables xi1 , . . . , xis satisfying this equation is said to be a sufficient subset of
arguments for the function f . If U is a sufficient subset for f and, for any V ⊂ U , V
isn’t a sufficient for f , then the variables in U are said to be essential arguments for f .
For natural s 6 s0, let B∗s,n be the set of all functions in Bs0,n essentially depending on

exactly s variables. It is clear that Bs0,n =
s0⋃
s=1

B∗s,n. We suppose that the number s0 is small

enough for accepting functions in Bs0,n to be of a bounded complexity.
Let ISs0,n denote the set of all bijective Boolean vector functions each consisting

of n coordinate functions in Bs0,n. Balancedness of each coordinate function of a Boolean
vector function f is the necessary condition for bijectivity of f . So the cardinality of ISs0,n

doesn’t exceed the number Ns0,n =

((
n

s0

)(
2s0

2s0−1

))n
, that is the number of all n-dimen-

sional vectors with coordinates being balanced Boolean functions in s0 variables taken in
all possible ways from the set {x1, . . . , xn}.

A funkeysubcipher with key functions in a bounded number of essential variables is a
funkeysubcipher C = (Fn2 , K,Fn2 , E,D), where K ⊆ ISs0,n. To synthesize these ciphers, we
need generating the key spaces K for them from vector functions in ISs0,n. Here, we propose
to do this just in the same way as we have done above in the set ISn using the inverse and
permutation operations.

Namely, take a vector function g(x1, x2, . . . , xn) in ISs0,n. Let g = (g1, . . . , gn). By the
definition of ISs0,n, for every i ∈ {1, . . . , n}, there exists a natural si 6 s0 such that gi ∈
∈ B∗si,n, that is, gi essentially depends on si variables. Define Ks0,n(g) = {π2(gσ2(π1(xσ1))) :
σ1, σ2 ∈ Fn2 , π1, π2 ∈ Sn}, where x = x1x2 . . . xn. Thus, we get that Ks0,n(g) ⊆ ISs0,n
and |Ks0,n(g)| 6 (2nn!)2. Moreover, for any function f = (f1, . . . , fn) ∈ Ks0,n(g) and any
i ∈ {1, . . . , n}, the number of essential variables of fi equals sj, the number of essential
variables of gj where j = π−1

2 (i).
Any subset K ⊆ Ks0,n(g) of an exponential cardinality can be taken as the key space

of the funkeysubcipher C with key functions in a bounded number of essential variables.
In particular, this role can be successfully played by the subsets Ks0,n(g, j) that are formally
defined, just as Kn(g, j), j = 1, 2, . . . , 15, have been done. For example, Ks0,n(g, 7) =
= {gσ2(π1(xσ1)) : σ1, σ2 ∈ Fn2 , π1 ∈ Sn}, |Ks0,n(g, 7)| 6 22nn!, and Ks0,n(g, 15) = Ks0,n(g).
The only difference is in the class of the function g that, for Kn(g, j), belongs to ISn and,
for Ks0,n(g, j), belongs to ISs0,n.
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To produce subsets K ⊆ Ks0,n(g) as key spaces for funkeysubciphers with key functions
in a bounded number of essential variables, we need to have a capability to generate vector
Boolean functions g = (g1 . . . gn) in Is0,n with various values of their parameters n, s0, s1,
. . . , sn. Unfortunately, we have no any exhaustive solution of this problem and can only
present now a pair of some restricted relevant methods.

Let IS∗s,n denote the set of all bijective Boolean vector functions each consisting of n
coordinate functions in B∗s,n. The methods just mentioned construct functions from IS∗s,n.

The first method is used in the case when s > 3 and s|n, i.e. n = st for some
t ∈ N. It is proved in [7] that IS∗s,s 6= ∅ for all s > 3. So, we can construct t

functions g(i) = g
(i)
1 . . . g

(i)
s ∈ IS∗s,s, i = 1, . . . , t. Then the function g(x1, . . . , xn) =

= g
(1)
1 (x1, . . . , xs) . . . g

(1)
s (x1, . . . , xs)g

(2)
1 (xs+1, . . . , x2s) . . . g

(2)
s (xs+1, . . . , x2s) . . . g

(t)
1 (x(t−1)s+1,

. . . , xn) . . . g
(t)
s (x(t−1)s+1, . . . , xn) belongs to IS∗s,n.

The second method starts from g(1)(x1, . . . , xs) = g1 . . . gs ∈ IS∗s,s too. Then we construct
the function g(2)(x1, . . . , xs, xs+1) = g1 . . . gsh where h = xs+1⊕q(x1, . . . , xs) and q ∈ B∗s−1,s.
It is proved in [8] that g(2) ∈ IS∗s,s+1. Repeating this step, we successively obtain the
functions g(3) ∈ IS∗s,s+2 (using the functions h = xs+2⊕q(x1, . . . , xs, xs+1) and q ∈ B∗s−1,s+1),
. . . , g(n+s−1) ∈ IS∗s,n.

5. Cryptanalysis
5.1. C r y p t a n a l y s i s p r o b l e m

In this section, we consider the cryptanalysis problem for funkeysubciphers giving our
attention to ciphers with key functions in bounded numbers of essential variables. Moreover,
we confine the consideration to ciphers with key spaces K = Ks0,n(g, j), where g is an
arbitrary function in (Bs0,n)n and j can be assigned any value from {1, . . . , 15}. However,
for some parameter j values, the cryptanalysis methods proposed here actually hold for
ciphers with the wider key spaces, particularly with K = Kn(g, j).

We assume that the cryptanalyst exploits a known plaintext attack with the threat of
total break (secret key recovery). This means that he possesses some blocks P1, . . . , Pm of
a plaintext and corresponding blocks C1, . . . , Cm of a ciphertext and tries to determine the
key that was used, that is, a function f(x) ∈ K = Ks0,n(g, j) such that Cl = f(Pl) for
all l ∈ {1, . . . ,m}. According to Kerckhoff’s principle, it is supposed that the cryptanalyst
knows the cipher C = (Fn2 , K,Fn2 , E,D) being used. Particularly, he knows the key space
K = Ks0,n(g, j) and its parameters g ∈ (Bs0,n)n, n ∈ N, s0 6 n, and j ∈ {1, . . . , 15}.
The knowledge of the function g(x1, . . . , xn) yields the knowledge of its inverse g−1,
coordinate functions g1, . . . , gn in Bs0,n and the sets X1, . . . , Xn of their essential variables
respectively, Xi ⊆ X = {x1, . . . , xn}, i = 1, . . . , n. On the base of this information,
the cryptanalyst has to determine the coordinate functions f1, . . . , fn of a key function
f(x1, . . . , xn) in Ks0,n(g, j) which satisfies the equalities f(Pl) = Cl for all l ∈ {1, . . . ,m}.
Here, for each i ∈ {1, . . . , n}, the function fi belongs to Bs0,n, its essential variables form a
subset Ui ⊆ X, and |Ui| = |Xi| = si if the permutation π2 in the expression for Ks0,n(g, j)
is the identity one. For the cryptanalyst, to determine the function fi means to determine
the set Ui of its essential variables and the value of fi for each combination of values of
variables in Ui.

Below we first give a general solution of the problem comprising the all fifteen partial
cases of it and then present specific solutions for some of these cases.
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5.2. G e n e r a l c r y p t a n a l y s i s m e t h o d
The method concerns the funkeysubcipher C with the general key space K = Ks0,n(g) =

= {π2(gσ2(π1(xσ1))) : σ1, σ2 ∈ Fn2 , π1, π2 ∈ Sn} which includes the partial key spaces
Ks0,n(g, j) for all j ∈ {1, . . . , 15}.

Recall that we have a string of Boolean variables x = x1x2 . . . xn, a vector Boolean
function g(x) = g1(x)g2(x) . . . gn(x) with coordinate functions g1, . . . , gn, where gi ∈ B∗si,n
for 1 6 si 6 s0 and i = 1, . . . , n, the blocks of a plain text P1, . . . , Pm and the corresponding
blocks of a ciphertext C1, . . . , Cm.

Let k ∈ K and Cl = Cl1Cl2 . . . Cln, l = 1, . . . ,m. Denote f(x) = f1(x)f2(x) . . . fn(x) =
= π2(gσ2(π1(xσ1))). Then fi ∈ Bs0,n, k = f(x), Cl = f(Pl), and Cli = fi(Pl), l = 1, . . . ,m
and i = 1, . . . , n.

Thus, the cryptanalysis problem is as follows: for every i ∈ {1, . . . , n} and given
equalities Cli = fi(Pl), l = 1, . . . ,m, determine the function fi(x). The problem is divided
into two subproblems: find out essential variables of the function fi and compute its values
for all possible values of these variables. In connection with the first subproblem, we need
to note that the number of essential variables of fi depends on whether the permutation π2

in f(x) = π2(gσ2(π1(xσ1))) is the identity one or not. If the answer is “yes”, then fi has the
same number si of essential variables as gi. Otherwise we can only say that this number is
less or equal to max{s1, . . . , sn} and doesn’t exceed s0.

To solve the first subproblem, we now present some auxiliary results. Let f ′(x1, . . . , xn)
be a, possibly, partial Boolean function given by two subsets M0

f ′ ⊆ Fn2 and M1
f ′ ⊆ Fn2 so

that α ∈M b
f ′ ⇔ f ′(α) = b, b ∈ F2.

We first define the following sets:

D(f ′) = {α⊕ β : α ∈M0
f ′ , β ∈M1

f ′},
inf D(f ′) = {δ : δ ∈ D(f ′), ¬∃δ′ ∈ D(f ′)(δ′ < δ)},

where for δ = d1 . . . dn and δ′ = d′1 . . . d
′
n in Fn2 , δ′ < δ ⇔ δ′ 6= δ & ∀t ∈ {1, . . . , n} (d′t 6 dt).

Particularly, in our case,

D(fi) = {Pl ⊕ Pj : Cli 6= Cji, l, j = 1, 2, . . . ,m}.

We next construct the Boolean matrix M ′ = || inf D(f ′)|| with the set of rows that
is equal to inf D(f ′). The columns in M ′ with the numbers 1, 2, . . . , n are assigned to
variables x1, x2, . . . , xn respectively. A subset J of them is said to be a cover of M ′ if for
each row in M ′, there is a column in J with the value 1 in this row. The cover J is minimal
if it doesn’t contain as a subset another cover of M ′.

At last, we note that in [9] we have proved that a subset of variables U = {xj1 , . . . , xjs}
is sufficient for f ′ iff the subset J of columns in M ′ with the numbers j1, . . . , js is a cover
of M ′, and U is essential for f ′ iff J is a minimal cover of M ′. Moreover, U is a unique
subset of essential variables for f ′ iff J is a unique cover of M ′; in this case, each row in M ′

is a unit vector ej (with a 1 in the j-th coordinate and 0’s elsewhere) and U = {xj1 , . . . , xjs}
if all the rows in M ′ are ej1 , . . . , ejs .

Also, in [10], we have proved that a subset of variables {xj1 , . . . , xjs} is a unique subset
of essential variables for a function f ′ in Bs0,n iff all the covers of the matrix ||inf D(f ′)||, the
cardinalities of which don’t exceed s0, have a non-empty intersection consisting of columns
with the numbers j1, . . . , js.

So, finding a unique subset of essential variables (if it exists) for the function fi in Bs0,n

and thus solving the first cryptanalysis subproblem is reduced to computing, for the
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matrix ||inf D(fi)||, the intersection of all covers whose cardinalities are not more than s0.
The computational complexity of this work is O(2s0).

Under the known essential variables xi1 , . . . , xisi of fi, any solution of the second
cryptanalysis subproblem for i ∈ {1, . . . , n} can be obtained as fi(x) = hi(xi1 , . . . , xisi ),
where hi : Fsi2 → F2, the vector function h1(x11 , . . . , x1s1

)h2(x21 , . . . , x2s2
) . . . hn(xn1 , . . . , xnsn )

is a bijection on Fn2 , and, for all α = a1a2 . . . an ∈ Fn2 , if α = Pl and l ∈ {1, . . . ,m}, then
hi(ai1 , . . . , aisi ) = Cli.

In particular, if for each i ∈ {1, . . . , n}, the set {xi1 , . . . , xisi} is a unique subset of
essential variables for fi and P = {Pli1Pli2 . . . Plisi : l = 1, . . . ,m} = Fsi2 , then the
solution f(x) of the cryptanalysis problem for the cipher C is unique and, for i ∈ {1, . . . , n},
it has fi(x) = hi(xi1 , . . . , xisi ), where hi(Pli1Pli2 . . . Plisi ) = Cli, l ∈ {1, . . . ,m}.

In the case of P 6= Fsi2 , the following problem arises: given a partially defined Boolean
function f ′(x1, . . . , xn) and a subset {i1, . . . , is} ⊂ {1, . . . , n}, find (if exists) a completely
defined Boolean function h(xi1 , . . . , xis) such that h(ai1ai2 . . . ais) = f ′(a1a2 . . . an) for each
n-tuple (a1a2 . . . an) from the domain of f ′. This problem is a special case of the known
problem of completing a partial function in a functional class and isn’t a subject of this
research.

For making references to the general cryptanalysis method described here, we name
it GCM. The core of GCM is the algorithm for finding, for a given partially defined
Boolean function f ′(x1, . . . , xn) from Bs0,n, such a function h(xi1 , . . . , xis) ∈ B∗s,n that
h(xi1 , . . . , xis) = f ′(x1, . . . , xn) on the domain of f ′. We denote this algorithm by B.

As for the parameters of the cryptanalysis problem, namely g, σ1, σ2, π1, π2, GCM
doesn’t depend directly on them both in the contents and in a result. This is not an
accidental fact, but it is because these parameters are not really the key k of the cipher C,
they only form the expression π2(gσ2(π1(xσ1))) to specify a bijective function f : Fn → Fn
which is in fact the key k of C and the result of GCM execution over the given pairs (Pi, Ci),
i = 1, . . . , n.

5.3. S o m e p a r t i c u l a r c r y p t a n a l y s i s m e t h o d s
Some particular cryptanalysis methods for a cipher C under consideration can be

obtained by applying GCM to ciphers Cj with key spaces Ks0,n(g, j) for j ∈ {1, . . . , 14}.
We think of these methods as key space limitations of the general method and denote
by GCMj. For example, GCM9 and GCM14 are GCM for ciphers with key spaces
K = Ks0,n(g, 9) = {π2(g(xσ1)) : σ1 ∈ Fn2 , π2 ∈ Sn} and K = Ks0,n(g, 14) = {π2(gσ2(π1(x))) :
σ2 ∈ Fn2 , π1, π2 ∈ Sn} respectively.

Now, we consider some other particular cryptanalysis methods that are not exactly key
space limitations of GCM, but give special solutions to some ciphers Cj with limited key
spaces.

Cases j = 1, 4, 5

Describing cryptanalysis methods in these cases, we limit our exposition to
determination of the inverse operations for obtaining f from g.

Let g−1 = (g−′1 , g
−′
2 , . . . , g

−′
n ), f−1 = (f−′1 , f−′2 , . . . , f−′n ), σ1 = σ11σ12 . . . σ1n, σ2 =

= σ21σ22 . . . σ2n, Pl = Pl1Pl2 . . . Pln, and Cl = Cl1Cl2 . . . Cln, l = 1, 2, . . . ,m.
In the case j = 1, whereK = Ks0,n(g, 1) = {g(xσ1) : σ1 ∈ Fn2}, the cryptanalysis problem

is trivial because, for every l ∈ {1, . . . ,m}, Cl = g(P σ1
l ), P σ1

l = g−1(Cl), P σ1i
li = g−′i (Cl),

i ∈ {1, . . . , n}, and σ1i is computed by using the Boolean implication

(ab = c)⇒ (b = 1⇔ c = a),
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namely σ1i = 1 ⇔ g−′i (Cl) = Pli for all i ∈ {1, 2, . . . , n} and some (any) l ∈ {1, . . . ,m},
particularly for l = 1.

By the same reason, the problem is trivial in the case j = 4, where K = Ks0,n(g, 4) =
= {gσ2(x) : σ2 ∈ Fn2}, because Cl = gσ2(Pl), Cσ2

l = g(Pl) and σ2 is computed by using the
same implication: σ2i = 1⇔ gi(Pl) = Cli, i = 1, 2, . . . , n.

In the case j = 5, where K = Ks0,n(g, 5) = {gσ2(xσ1) : σ1, σ2 ∈ Fn2}, we have Cl =
= gσ2(P σ1

l ), Cσ2
l = g(P σ1

l ), and P σ1
l = g−1(Cσ2

l ). For every pair (σ2, l), where σ2 ∈ Fn2 and
l = 1, 2, . . . ,m, compute the value σ(σ2,l)

1 = σ
(σ2,l)
11 σ

(σ2,l)
12 . . . σ

(σ2,l)
1n of the vector σ1 in F2n by

using the algorithm of the case j = 1, namely

σ
(σ2,l)
1i = 1⇔ g−′i (Cσ2

l ) = Pli, i = 1, . . . ,m.

The result of the cryptanalysis is a pair (σ1, σ2) satisfying the equality σ1 = σ
(σ2,l)
1 for

all l ∈ {1, . . . ,m}. Note that this answer is not sure to be unique. The computational
complexity of the algorithm is O(2n).

Note that the attacks described in these cases successfully work on ciphers with K =
= Kn(g, j) for j = 1, 4, 5 respectively and g ∈ ISn.

Case j = 7

In this case, K = Ks0,n(g, 7) = {gσ2(π1(xσ1)) : σ1, σ2 ∈ Fn2 , π1 ∈ Sn} and the cipher
under consideration is C7 that is the partial case of C, where π2 = 1. Besides, the ciphers Cj
for all j ∈ {1, . . . , 6} are partial cases of C7, and the cryptanalysis problem for them can
be solved by any method solving this problem for C7. The method presented here is an
amplification of GCM, namely, instead of method B, a method A is used, which takes into
attention the condition π2 = 1, yielding the fact that a function fi(x) to be found has the
same number si of essential variables as the known function gi. So, finding essential variables
for fi is reduced in A to finding, for the matrix ||inf D(fi)||, a minimal cover of the given

cardinality — si. The computational complexity of the last problem doesn’t exceed
(
n

si

)
.

In other details, the cryptanalysis method for C7 coincides with GCM.
Some program implementations of algorithms A and B and the results of their thorough

testing on computers have been presented in [2].
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