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This paper proposes adaptive predictors of non-Gaussian Ornstein—Uhlenbeck process with unknown parameters. Pre-
dictors are based on the truncated parameter estimators. Asymptotic and non-asymptotic properties of the predictors
are investigated. In particular, there is found the rate of convergence of the second moment of a prediction error to its
minimum value. In addition, there is established an asymptotic optimality of the adaptive predictors in the sense of a
special risk function. The structure of the risk function assumes the optimization of both the duration of observations
and the prediction quality.
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Nowadays mathematical statistics along with economics, financial mathematics, engineering, biology
and other fields of science that use mathematical tools for their benefits, are turned to development of predic-
tive methods. Models allowing making predictions of high statistical quality are highly appreciated. Currently,
one of the most popular continuous-time models that is extensively used in financial mathematics is a non-
Gaussian Ornstein-Uhlenbeck process driven by the Lévy process. Usually in practice the applied models de-
pend on unknown parameters. Estimation problem of the unknown parameters of dynamic systems is a rele-
vant one since the estimators of the dynamic parameters are to be used in various adaptive problems including
the problem of adaptive prediction. The quality of adaptive predictors significantly depends on a choice of
estimators of the model parameters. One of the most proper methods to solve this problem is the truncated
estimation method proposed in [1]. It gives an opportunity to obtain the estimators of guaranteed quality by
samples of fixed size under low level of a’priory information on system parameters.

Adaptive prediction problem for discrete-time systems was solved in [2] on the basis of truncated esti-
mators proposed in [1]. Later, the same problem for Gaussian Ornstein-Uhlenbeck process was solved in [3,4]
on the basis of truncated estimators. In this paper we propose adaptive predictors of non-Gaussian Ornstein-
Uhlenbeck process constructed on the basis of truncated estimators of dynamic parameters which are optimal
in the sense of a special risk function. The risk function aims to optimize both the duration of observations and
the predictive quality. The risk function of similar structure first appeared in [5] for the problems of parameter
estimator’s optimization. Later on, this idea was developed in [6, 7] etc. for optimization of predictors of
dynamic discrete-time systems.

1. Problem statement. Optimal prediction

Consider the following regression model:
dx, =axdt+dg,, t >0 (1)
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with zero mean initial condition x,, having all the moments. Here & =pW, +p,Z,,p, #0and p, are some
constants, (W,,t>0) is a standard Wiener process, given on a filtered probability space (Q,F,{F}., P)

N

adapted to a filtration {F.}..,, Z, = ZYk is a compound Poisson process, where Y, , k >0 are i.i.d. random zero
k=1

mean variables having all the moments and (N,) is a Poisson process with the intensity A >0, i.e.
i
N =>x{T,<t} and T,=3r,
i>1 1=1
Here (TJ),->1 are jumps of the Poisson process (N, )_, and (z,),, are i.i.d. random variables that are exponen-
tially distributed with the parameter A.
It should be noted that for p, =0 the process (1) is a standard Ornstein—-Uhlenbeck process.
Suppose that the process (1) is stable, i.e. the parameter a < 0. Note that in this case for every m>1

sup EX»[2m <.
t=0

The purpose is to construct a predictor for x by observations x"™ = (x, )Ogsﬁfu which is optimal in a sense of

the risk function introduced below. Here u > 0 is a fixed time delay.
The solution of the process x,, obtained by the Ito formula, has the form

t
X, = %X, + jea(t’z’déz >0
0

and for given u > 0we have the representation
X, =bx_, + N L2U,

where
t
b=e®, n,, = [eJdg, En,, =0 and o®:=Dn,, = zi(pf +ApSEY,)[0® 1.
' a
t-u
Optimal in the mean square sense predictor is the conditional mathematical expectation

X, =bx_,, t>u.
2. Adaptive prediction. Model parameter estimators

As in practice the parameter a and, as follows, b are unknown, it is impossible to construct the optimal
predictor for real processes. In order to solve the problem of prediction we define an adaptive predictor that is
constructed by an estimator a; of unknown parameter a.

Define adaptive predictor as

% (t—u)=b_,x_,, t>u, 2
where b, =e* t>u; & = proj_. o & isthe truncated estimator of the parameter a constructed similar
to discrete-time case [2] on the basis of the least squares estimator

t
vadxv t
a =2 X[f x2dv >t Iogltj. (3)
[xZdv \°
0

3. Risk functions and prediction criteria

Denote the prediction errors of x’ and % (t—u) as

eto 3=X1—Xt°=771,rfuv et(t_u)::xt_)zt(t_u):(b_b’\t—u)xt—u+nt,t—u’t = Uu.
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Now we define the loss function
L, :TAez(t)+t, t>u,
where
1 t
e’(t) == |e?(s—u)ds
(=1 j ((s-u)
and the parameter A > 0 stands for the cost of prediction error. We also define the risk function R =EL,
which has the following form
R, =TAEe2(t) +t
and consider optimization problem
R — mtin.
For the optimal predictors x_ it is possible to optimize the corresponding risk function directly

R® = E(TA(eo(t))z +tj _fo

2

+t— mtin, (@)
where
(&) =ﬂ(e§)2ds.

In this case the optimal duration of observations T, and the corresponding value of Rfo are respec-

tively
T, = A'%, R, =2A"%c, (5)

where o :=+/c® . However, since a and as follows, ¢ are unknown and both Tf and Rfo depend on a, the
A

optimal predictor can not be used. Then we define the estimator T, of the optimal time T, as

T,=inf{t>t,:t> A", }, (6)
where t, == A"?log™ A=0(A"?). Here o, = E is the estimator of unknown o,
1 ~ 2
2 = —_——— —_—
% =T, u(xS btxH) ds.

The estimator is defined like that since o = En’,_, = E(x, —bx,_,)*.

4. Properties of parameter estimators and adaptive predictors

Estimators a,, b, and o, that are used in construction of adaptive predictors have the properties given

in Lemma below which can be proven similar to [3]. Compare to [3] this way of estimation of the variance c*
does not require the knowledge of parameters the model parameters. In this particular case it is not dependant

on the true values of parameters p,,p,, EY,’A and their estimators. Moreover, the upper boundary for the mo-

ments of deviation of o’ is more accurate than in [3].

In what follows, C will denote a generic non-negative constant whose value is not critical (and not
always the same).

Lemma 1. Assume the model (1). Then for t—u > s, :=exp(2|a|) and some numbers C estimators &,

and 6t have the properties:
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and

E(kSt—b)2p Stgp’ p>1.

E(O'tz—az)zp Stgp, p=>1.

()

(8)

Proof. We prove the property (7) similar to [3]. By the definition (3) of the estimator a, and using (1)

let us find representation for the deviation of the estimator

[xde, /. t

a-a=2 X[Ixjdvztlog‘ltj—a.x[.[xfdv<t|og‘1tj.
jxfdv 0 °
0

Define
t

1 _ Yo oy _11
gt_igad% g——550%4#h5ﬂ1)>0,ﬂ—glkdg-

Then

2
E(at—a)zsz[i}p tlo. = log™t]+a?" - Plg, <log™t]= 1, +1,.

0y
Using the Cauchy-Schwarz-Bunyakovsky inequality for the first summand we get:

I, = E[£+ f, ﬂ} [gt > Iog’lt]_ ZC 9= gt x[gt > Iog’lt]s
g 96, g¢
C C 3
2
St—p+C-Iogt-Eft2p -|g—gt|£t—p+C-Iogt-(Eft4p-E(g—gt) )2 <
C 1 3
ﬁt—p+c'|09t't—p'(E(g -9.))2.
Now we estimate the moments E (g —g, )"
By the Ito formula for x? from [8] it is true that
X2 =X +2.[x dx, +pit+ D" (AX,) =
O<s<t
=X +2aJ.x2ds+p1_fx dW, +p, D X AZ +pit+ps . (AZ,)
O<s<t O<s<t
Note that
N +00
> (Az,) =D =Y AT, <t
0<s<t k=1 k=1
where AX, = X, —X,_. Then by making use of the representation
1xX-%_p P 1 2 2
= X AZ.) —A\EY.
9T 2atj O;t A0 O;I( ) '

and the strong law of large numbers one can show that

1
lim xzds——z—(pl+p2EY2k) as.

tow

9)

(10)
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By (10) for every m>1 it holds

m_C
E(g,-9) <= (11)
Then
C logt _C
<5 +C p?y L t>u (12)
and applying (11) , as well as the Chebyshev mequallty for t>s, we have
} a’P C
I, <a’"- P(|gt —g|>g-log 1t)sﬁ' E(g,-9)" <=5 (13)
(g—log™t) t

From (9), (12), (13) and definition of &, the property (7) follows.

, which can be obtained

The assertion (8) follows from the obvious inequality ‘Bt —b‘ <u-e

by the Taylor expansion for the exponent exp((4, —a)u).

Using the following representation of the estimator o?
t 2 t t t
% = t_l ( -bx,, ) ds=$“x§_uds-(b—ﬁt)2+£n§,$_uds+2ju'xs_u-nsvs_uds-(b—ﬁt)}
we get its deV|at|on in a form
of_gz_tlul(nssu o )ds+—ij ds-(6,-b)’ +_iju Mo (b=B) =1+ 1,41,

Let us estimate the mathematical expectatlon of each summand separately. For the first one consider the
caseof p=1

2
El2 :(t—;u)zE(;[(ns” —cz)dsj = T —lu . H‘E Moy —0°) (=) %[ v —s|<u]dvds <

devds — i j'dv __u

us-u

|_\

Wﬂxﬂv—q < u]dvds =

Similarly, for an arbitrary number p we get the mequallty
EIZP < c_
(t-u)®
We apply the Cauchy-Schwarz—-Bunyakovsky inequality and (6) to the third summand and since the
process x, is stable it holds

C
EIZ2P<——— / X uds ,f b b =
t U J. p

Using the independency of n,,, and x_,, the Cauchy-Schwarz-Bunyakovsky inequality and (8), we

t-u?

4p
) 4 ; 2 _C
El3ps(t_u)2p\/E[!xs_u-ns,s_uds] -,fE(b—bI) <5
Lemma is proven.

Now we are ready to investigate the statistical properties of the adaptive predictor (3). The prediction
error has the form

obtain

e(t-u)=x—-%(t-u)= (b b )Xt—u+§t,t—u'
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Thus, for some C
limt-(Ee; (t-u)-o)<C
and if there is a’priori information that |a| <L then
Ee’(t-u)-o° s%, t>u+exp(2L).

Analogously to [4], our purpose is to prove the asymptotic equivalence of T, and T, in the almost
surely and mean senses and the optimality of the presented adaptive prediction procedure in the sense of equiv-
alence of R?o and the obviously modified risk

R, = A. ETieZ(TA)+ ET,. (14)

A

Theorem 1. Assume the model (1). Let the predictors %, (t—u) be defined by (2), the times T,, T, and
the risk functions R’,, R, defined by (5), (6) and (14). Then for every a <0

i) T—A—>1 a.s.;
0 A—>x
TA
i) ot
A

Proof of Theorem 1 in general is similar to one from [4].

Conclusion

Adaptive prediction problem of the non-Gaussian Ornstein-Uhlenbeck process is solved. Non-asymp-
totic upper bound of the second moment of the prediction errors is found. It is shown that this bound is inverse
proportional to the duration of observations. Non-asymptotic properties of adaptive predictors are obtained
due to the usage of the truncated estimators [1] of the unknown parameters constructed by samples of fixed
size. This method can be applied to various problems of parametric and non-parametric statistics.

In this paper we propose adaptive optimal predictors of non-Gaussian Ornstein-Uhlenbeck process.
Their optimality in the sense of a special risk function is shown. The used risk function makes it possible to
optimize the duration of observations along with the prediction quality.

The authors are very thankful to S. Pergamenshchikov for the helpful comments and remarks.
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B pabore npemararorcs aganTHBHBIE IIPOTHO3EI HErayccoBckoro npouecca OpHiiTeitHa—YiieHOeka ¢ HeM3BECTHBIMHU IapaMeT-
pamu. IIporao3sl 0OCHOBaHbI Ha YCEUEHHBIX OLIEHKaX MapaMeTpoB. MccneyloTess acCHMITOTHYECKHE H HEaCUMITOTHYECKUE CBOMCTBA
IIPOTHO30B. B wacTHOCTH, HalifleHa CKOPOCTH CXOJIMMOCTH BTOPOTO MOMEHTA OIIMOKH MPOTHO3UPOBAHMS K €€ MUHUMAIEHOMY 3Haue-
Huo. Kpome Toro, ycraHoBneHa acHMNTOTHYECKAass ONTHMAIbHOCTh aJalTHBHBIX NPOTHO30B B CMbICIe 0coOoi (yHKIMU pHCKa.
CrpykTypa QyHKIMH pUCKa MPEANOJIaraeT ONTHMHU3ALHIO KK JUINTEIbHOCTH HAOMIOICHUH, TaK M Ka4eCTBa IIPOTHO3MPOBaHUA.

KitoueBble CJI0Ba: yCEUEHHOE OLICHUBAHKE NTApaMETPOB; aJallTHBHOE ONTHMAIbHOE NPOTHO3MPOBAHUE; HErayCCOBCKHUIT Mmpolece
OpHiuteitHa—YnenOeka; GyHKINS prcKa.
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