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Here, we define an asymmetric substitution cryptosystem combining both a pub-
lic key cipher and a signature scheme with the functional keys. A public key
in the cryptosystem is a vector Boolean function f(x1, . . . , xn) of a dimension n.
This function is obtained by permutation and negation operations on variables
and coordinate functions of a bijective vector Boolean function g(x1, . . . , xn) =
= (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)). The function g is called a generating function
of the cryptosystem. For each i ∈ {1, . . . , n}, its coordinate function gi(x1, . . . , xn) is
assumed to be specified in a constructive way and to have a polynomial (in n) com-
plexity. A private key of the cryptosystem is the function f−1, that is, the inverse of f .
The existence of f−1 follows from the bijectiveness of g and preserving this property
by permutation and negation operations. Function g and its coordinates g1, . . . , gn
are public parameters of the cryptosystem. (A variant of the cryptosystem allows to
include them into the private key). Of course, the permutation and negation opera-
tions by which a public key is computed from the generating function must be secret
as private exponents in RSA and ElGamal cryptosystems. A block P of a plaintext is
encrypted to a block C of a ciphertext by the rule C = f(P ), and C is decrypted to P
by the rule P = f−1(C). A signature on a message M is computed as S = f−1(P ),
and its validation is proved by verifying the equality M = f(S). This cryptosystem is
believed to resist classical and quantum computers attacks. Its security is based on the
difficulty of inverting large bijective vector Boolean functions. Cryptanalysis of the
cryptosystem shows that its computational complexity can reach the value O(n!2n).

Keywords: vector Boolean functions, invertibility, asymmetric substitution cryp-
tosystem, cryptanalysis.

Introduction
Public-key cryptosystems are usually constructed on the base of number theory or

algebraic structures and are very susceptible to quantum attacks. Perhaps the only
exception to this rule are finite automaton public key cryptosystems [1]. In this paper,
we suggest a public-key cryptosystem based on an invertible system of n Boolean functions
which is variable like a cryptographic key by the permutation and negation operations
on system’s arguments and coordinates. We call it ACBF—Asymmetric Cryptosystem
on Boolean Functions. The cryptosystem typically consists of two parts — a public-key
cipher and a signature scheme. A general cryptanalysis scheme is described for both of
them. According to this scheme, some particular known playntext (and known message)
attacks are proposed for the universal ACBF and for its derivatives with some permutation
and negation operations being identities. Estimates for computational complexity of these

1The authors were supported by the RFBR-grant no. 17-01-00354.
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attacks are given too. The most of them is O(n!2n). For each of fifteen ACBF we considered,
the proposed attacks on its cipher and signature scheme happened to have the same estimate
of computational complexity.

1. Definition
In [2], we have defined a symmetric block substitution cipher with the functional keys.

Here, by using the same construction, we define an asymmetric substitution cryptosystem
including both a public key cipher and a signature scheme with the functional keys. To give
a formal definition of this cryptosystem, we first define the permutation and negation
operations. Let n be an integer, n > 2, and Sn be the set of all permutations of the row
(1 2 . . . n), that is, Sn = {(i1i2 . . . in) : ij ∈ {1, 2, . . . , n}, j 6= r ⇒ ij 6= ir; j, r ∈ {1, . . . , n}}.
A permutation π = (i1i2 . . . in) ∈ Sn is called a permutation operation if the result of its
application to any word w = w1w2 . . . wn is the word π(w) = wi1wi2 . . . win . A Boolean
vector σ = b1b2 . . . bn ∈ Fn2 is called a negation operation if the result of its application to
a string α = a1a2 . . . an of Boolean values (constants, variables or functions) a1, . . . , an is
the string ασ = ab11 a

b2
2 . . . a

bn
n where for a and b in F2, ab = a if b = 1 and ab = ¬a if b = 0.

The permutation and negation operations π and σ are called identity and denoted by 1 if
π = (1 2 . . . n) and σ = 11 . . . 1 respectively.

Formally, our asymmetric cryptosystem on Boolean functions is a three-tuple C =
= (X,K, Y ) where X is the set of plaintexts, or messages, X ⊆ Fn2 , Y is the set of
ciphertexts or signatures, Y ⊆ Fn2 , and K = K1 × K2 is the set of keys, K1 — the set
of public keys, K1 ⊆ Kn(g) = {f(x) : f(x) = π2(g

σ2(π1(x
σ1)));σ1, σ2 ∈ Fn2 ; π1, π2 ∈ Sn};

x = (x1, . . . , xn) is a string of different Boolean variables, g : Fn2 → Fn2 is a bijective vector
Boolean function g(x) = g1(x)g2(x) . . . gn(x) (we call it generating function of C) with all
its coordinate functions g1(x), . . . , gn(x) specified in a constructive way and computed with
a polynomial (in n) time complexity; π1, π2 and σ1, σ2 are, respectively, permutation and
negation operations (we call them key parameters of C); and K2 = {f−1 : f ∈ K1}— the set
of private keys. In the case of X = Y = Fn2 and K1 = Kn(g), we call C a universal ACBF.

In C, as in any asymmetric cipher, a public key f is used to encrypt a plaintext x
and the private key f−1 — to decrypt the corresponding ciphertext y, namely: y = f(x)
and x = f−1(y) for x ∈ X, y ∈ Y , f ∈ K1, f−1 ∈ K2. Also, in C, as in any digital
signature scheme with appendix (the signed message), a private key f−1 is used to sign a
message x and the public key f — to verify signatures, namely: the signature for a message x
is s = f−1(x) and a signature s on a message x is valid iff f(s) = x.

To provide the necessary property of ease (polynomial time complexity) of computing
the functions f and f−1, the generating function g itself and its inverse g−1 should
have this property too. In this case, the values y = f(x) = π2(g

σ2(π1(x
σ1))) and

x = f−1(y) = [π−11 (g−1((π−12 (y))σ2))]σ1 would be computed with a polynomial complexity.
The polynomial computational complexity of each coordinate in generating function g
guarantees a polynomial complexity of computing g itself. This is true if, for example,
every coordinate function gi(x) essentially depends on some si 6 s0 variables xi1 , . . . , xisi
from the string x, that is, gi(x) = hi(xi1 , . . . , xisi ) for a function hi : Fsi2 → F2 and
s0 is a small enough integer, 1 6 s0 6 n. As for providing a polynomial complexity
of computing the function g−1, there are many ways to choose g in C preserving its
polynomial complexity in g−1. One of them is the following: g(x) = g(1)(x) . . . g(r)(x),
1 6 r 6 n, g(i)(x) = gi1(x) . . . gisi (x) = hi1(x

(i)) . . . hisi (x
(i)) = h(i)(x(i)), x(i) = xi1 . . . xisi ,

h(i) : Fsi2 → Fsi2 is a bijection, s1 +s2 + . . .+sr = n, i 6= j ⇒ {i1, . . . , isi}∩{j1, . . . , jsj} = ∅,
i, j ∈ {1, 2, . . . , r}. In this case, g(x) = h(1)(x(1)) . . . h(r)(x(r)) and if y = g(x), then
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y(i) = yi1 . . . yisi = h(i)(x(i)), h(i)−1
(y(i)) = x(i), g−1(y) = h(1)

−1
(y(1)) . . . h(r)

−1
(y(r)). That

is, g−1(y) is computed with a polynomial complexity.
The security of ACBF C is based on the difficulty of inverting large bijective vector

Boolean functions, that is, of computing x = f−1(y) for y = f(x). For an opponent or
cryptanalyst, who (this is believed) doesn’t know the values of key parameters π1, π2, σ1
and σ2 in f , this problem is really difficult one with an exponential time complexity of
decision algorithm.

2. Cryptanalysis problem
The cryptanalysis problem that we study for ACBF C in the paper is the secret

key recovery, assuming some plaintexts or messages and the corresponding ciphertexts or
signatures are known. If C is a cipher, the problem is set as follows: given f(x) ∈ K1, Pl ∈ X,
and Cl = f(Pl), l = 1, 2, . . . ,m, compute f−1(y). Otherwise, that is, if C is a signature
scheme, the problem looks like the following: given f(x) ∈ K1, Ml ∈ X, and Sl = f−1(Ml),
l = 1, 2, . . . ,m, compute f−1(x). Further, the problem in the first case is called the cipher
cryptanalysis, in the second case — the signature cryptanalysis. Any methods solving them
are called attacks on cipher and on signature scheme respectively. Aiming to recover the
secret key, they are total break attacks. Besides, when we say that the public key f(x) is
given, we suppose that everybody has a possibility to compute its value at any point x
for a polynomial time, but no cryptanalyst (opponent) knows the parameters π1, π2, σ1, σ2
of f(x) (compare, for example, with ga over Zp in ElGamal cipher).

Below we describe some attacks on ciphers and on signature schemes of a universal
ACBF C and of its particular derivatives which are ACBF obtained from C by replacing
some key parameters with the identity operation 1. Here is a more correct definition of this
concept. Let I = {π1, π2, σ1, σ2}, J ⊂ I, and C(J) = (X,K(J), Y ) where X = Y = Fn2 ,
K(J) = K1(J)×K2(J),K2(J) = {f−1(x) : f(x) ∈ K1(J)},K1(J) = Kn(g, J), andKn(g, J)
is the set of all functions f(x) = π2(g

σ2(π1(x
σ1))) such that π1, π2 ∈ Sn, σ1, σ2 ∈ Fn2 , and

each key parameter from I \J is the identity. By the definition, Kn(g, J) ⊆ Kn(g), therefore
C(J) is really an ACBF;Kn(g, I) = Kn(g), therefore C(I) = C;Kn(g,∅) = {g(x)}, therefore
C(∅) is a trivial cryptosystem. We call C(J) a particular derivative of the C if ∅ 6= J 6= I.
So, for any universal ACBF C, we have 14 particular derivatives C(J) in total.

Note that for any vector-columns a, σ in Fn2 and a permutation π = (i1i2 . . . in) ∈ Sn, if
c = ¬σ, w(a) is the weight of a, that is the number of 1’s in a, and T = (tkj) is a permutation
matrix of order n over F2 where tkj = 1⇔ j = ik for all k, j ∈ {1, 2, . . . , n}, then aσ = a⊕c,
π(a) = Ta, and w(Ta) = w(a). Further, we use these facts without additional explanations
and call T the matrix of the permutation π. Moreover, we introduce the following notation:
A and D are the matrices of permutations π1 and π2 respectively and b and d are the
vector-columns ¬σ1 and ¬σ2 respectively. This allows us to apply the symbols of variables
A,D, b, d instead of symbols of operations π1, π2, σ1, σ2 respectively in the sets I, J as well
as in the formulas for f(x), f−1(x) and so on. The fact of such replacement is denoted by
the sign '. For example, {π1, σ2} ' {A, d}.

3. General scheme of attack
Here is the general scheme of an attack on the cipher in an ACBF C(J).
1. Express the function f−1(y) by a formula in the set of variables and operations

J ∪ {y, g,⊕, ·,−1 }.
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2. Record the system of equations E expressing the dependence of variables from J on
the values Pl, Cl, 1 6 l 6 n, by means of operations ⊕, ·,−1 and function g.

3. Solve the system E in unknowns from J using a proper method [3].
4. Substitute the variables from J in formula for f−1(y) by their values from the solution

of the system E. The resulting formula is the result of the attack.
5. Estimate the computational complexity of the attack as a time complexity of solving

the system of equations E.
The description of the general scheme of an attack on the signature scheme in an

ACBF C(J) is obtained from this scheme for ciphers by substitution f−1(x), Ml, and Sl for
f−1(y), Cl, and Pl respectively. The attacks, described below, on universal ACBF C = C(I)
and on its particular derivatives C(J) are constructed according to the general scheme.
In the case of nonlinear equations in the system E, this system in them is solved by the
method of linearization set [3, 4] (further we call it briefly method of LS). The vector
weight invariance related to multiplying by a permutation matrix is used to decrease the
computational complexity of some of these attacks in practice.

4. Attacks on universal ACBF
4.1. A t t a c k o n c i p h e r

We have y = f(x) = π2(g
σ2(π1(x

σ1))) = D(g(A(x ⊕ b)) ⊕ d); D−1y ⊕ d = g(A(x ⊕ b)),
A−1(g−1(D−1y ⊕ d))⊕ b = x, f−1(y) = x, and Cl = f(Pl), l = 1, 2, . . . ,m. Hence,

f−1(y) = A−1g−1(D−1y ⊕ d)⊕ b

where (D−1, d, b, A) is a solution of the system of equations

D−1Cl ⊕ d = g(A(Pl ⊕ b)), l = 1, 2, . . . ,m,

which is solved by the method of LS, namely by assigning in turn the different values to the
variables A, b and solving the resulting system of linear equations with unknowns in D−1
and d. So, the computational complexity of the attack is O(n!2n).

4.2. A t t a c k o n s i g n a t u r e s c h e m e
We have Sl = f−1(Ml) = A−1g−1(D−1Ml ⊕ d)⊕ b, l = 1, 2, . . . ,m, and

f−1(x) = A−1g−1(D−1x⊕ d)⊕ b

where (D−1, d, b, A) is a solution of the system of equations

D−1Ml ⊕ d = g(A(Sl ⊕ b)), l = 1, 2, . . . ,m,

which is solved by the method of LS, that is, by assigning in turn the different values to
the variables A, b and solving the resulting system of linear equations with unknowns D−1
and d. So, the computational complexity of the attack is O(n!2n).

5. Attacks on particular derivatives of universal ACBF
5.1. A t t a c k s o n c i p h e r s

Given J ⊂ {π1, π2, σ1, σ2} ' {A,D, b, d}, f(x) ∈ Kn(g, J), Pl ∈ Fn2 , and Cl = f(Pl),
l = 1, 2, . . . ,m, compute f−1(y). Consider the possible cases.
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1. J = {σ1} ' {b}.
We have y = f(x) = g(xσ1) = g(x ⊕ b) and b = ¬σ1, therefore g−1(y) = x ⊕ b and

f−1(y) = x. Hence,
f−1(y) = g−1(y)⊕ b

where
b = Pl ⊕ g−1(Cl), l = 1, 2, . . . ,m.

So, b = P1 ⊕ g−1(C1). Computational complexity of this attack is a polynomial in n.
2. J = {π1} ' {A}.
Here, y = f(x) = g(π1(x)) = g(Ax) and A is the matrix of π1; Ax = g−1(y), x =

= A−1g−1(y), f−1(y) = x. Hence,

f−1(y) = A−1g−1(y),

and the matrix A is a solution of the system of linear equations

APl = g−1(Cl), l = 1, 2, . . . ,m,

which is solved for a polynomial time.
In case m = 1, this system has r = w!(n − w)! of solutions where w = w(P1) and r

is the product of permutation quantities for ones and for zeros in P1. The computational
complexity of this attack coincides the time complexity of solving the system of linear
equations problem and does not exceed a polynomial in n.

3. J = {π1, σ1} ' {A, b}.
In this case, y = f(x) = g(π1(x

σ1)) = g(A(x ⊕ b)); g−1(y) = A(x ⊕ b), w(x ⊕ b) =
= w(g−1(y)), A−1g−1(y)⊕ b = x, f−1(y) = x.

Define Bl ⊆ Fn2 by induction on l = 1, 2, . . . ,m, namely let B1 = {b : w(P1 ⊕ b) =
= w(g−1(C1))} and Bl = {b : b ∈ Bl−1,w(Pl ⊕ b) = w(g−1(Cl))}, 2 6 l 6 m. Then

f−1(y) = A−1g−1(y)⊕ b
where (A, b) is a solution of the following system of equations

A(Pl ⊕ b) = g−1(Cl), l = 1, 2, . . . ,m,

which is solved, using the method of LS, by assigning in turn the different values from the
set Bm to the variable b and solving the resulting system of linear equations with unknowns
in A. The computational complexity of the attack is O(Cn/2

n ).
4. J = {σ2} ' {d}.
y = f(x) = gσ2(x) = g(x)⊕ d and d = ¬σ2; g−1(y ⊕ d) = x, f−1(y) = x. Hence,

f−1(y) = g−1(y ⊕ d)

where
d = Cl ⊕ g(Pl), l = 1, 2, . . . ,m.

So, d = C1 ⊕ g(P1). Computational complexity of the attack is a polynomial in n.
5. J = {σ1, σ2} ' {b, d}.
y = f(x) = gσ2(xσ1) = g(x ⊕ b) ⊕ d where b = ¬σ1, d = ¬σ2; x ⊕ b = g−1(y ⊕ d),

g−1(y ⊕ d)⊕ b = x, f−1(y) = x. Hence,

f−1(y) = g−1(y ⊕ d)⊕ b
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where (b, d) is a solution of the following system of equations

g(Pl ⊕ b)⊕ d = Cl, l = 1, 2, . . . ,m,

and can be computed by the method of LS, that is, by assigning in turn the different values
to b and solving the resulting system of linear equations with unknowns in d. The complexity
of this attack is O(2n).

6. J = {π1, σ2} ' {A, d}.
y = f(x) = gσ2(π1(x)) = g(Ax)⊕d; Ax = g−1(y⊕d), w(x) = w(g−1(y⊕d)), A−1g−1(y⊕

⊕ d) = x, f−1(y) = x.
Define Dl ⊆ Fn2 by induction on l = 1, 2, . . . ,m, namely let D1 = {d : w(P1) =

= w(g−1(C1 ⊕ d))} and Dl = {d : d ∈ Dl−1,w(Pl) = w(g−1(Cl ⊕ d))}, 2 6 l 6 m.
Then

f−1(y) = A−1g−1(y ⊕ d)

where (A, d) is a solution of the following system of equations

APl = g−1(Cl ⊕ d), l = 1, 2, . . . ,m.

This system is solved, using the method of LS, by assigning in turn the different values
from the set Dm to the variable d and solving the resulting system of linear equations in
unknowns in A. The computational complexity of the attack is O(Cn/2

n ).
7. J = {π1, σ1, σ2} ' {A, b, d}.
y = f(x) = gσ2(π1(x

σ1)) = g(A(x⊕b))⊕d;A(x⊕b) = g−1(y⊕d), w(x⊕b) = w(g−1(y⊕d)),
A−1g−1(y ⊕ d) = x⊕ b, f−1(y) = x.

For each d ∈ Fn2 , define Bl(d) ⊆ Fn2 by induction on l = 1, 2, . . . ,m, namely let B1(d) =
= {b : w(P1⊕b) = w(g−1(C1⊕d))} and Bl(d) = {b : b ∈ Bl−1(d),w(Pl⊕b) = w(g−1(Cl⊕d))},
2 6 l 6 m. Then

f−1(y) = A−1g−1(y ⊕ d)⊕ b
where (A, b, d) is a solution of the following system of equations

A(Pl ⊕ b) = g−1(Cl ⊕ d), l = 1, 2, . . . ,m.

This system is solved, using the method of LS, by assigning in turn the different values (b, d)
with d from Fn2 and b from Bm(d) to the pair of variables (b, d) and solving the resulting
system of linear equations in unknowns in A. The computational complexity of the attack
is O(2nCn/2

n ).
8. J = {π2} ' {D}.
y = f(x) = π2(g(x)) = Dg(x) where D is the matrix of the permutation π2; D−1y =

= g(x), g−1(D−1y) = x, f−1(y) = x. Hence,

f−1(y) = g−1(D−1y)

where D−1 is a solution of the system of linear equations

D−1Cl = g(Pl), l = 1, 2, . . . ,m.

Computational complexity of this attack is a polynomial in n.
9. J = {π2, σ1} ' {D, b}.
y = f(x) = π2(g(xσ1)) = Dg(x⊕ b); D−1y = g(x⊕ b), w(y) = w(g(x⊕ b)), g−1(D−1y)⊕

⊕ b = x, f−1(y) = x.
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Define Bl ⊆ Fn2 by induction on l = 1, 2, . . . ,m, namely let B1 = {b : w(C1) = w(g(P1⊕
⊕ b))} and Bl = {b : b ∈ Bl−1,w(Cl) = w(g(Pl ⊕ b))}, 2 6 l 6 m. Then

f−1(y) = g−1(D−1y)⊕ b

where (D−1, b) is a solution of the system of equations

D−1Cl = g(Pl ⊕ b), l = 1, 2, . . . ,m,

which is solved, using the method of LS, by assigning in turn the different values from Bm

to the variable b and solving the resulting system of linear equations with unknowns in D−1.
So, the computational complexity of the attack is O(Cn/2

n ).
10. J = {π1, π2} ' {A,D}.
y = f(x) = π2(g(π1(x))) = Dg(Ax); D−1y = g(Ax), A−1g−1(D−1y) = x, f−1(y) = x.

Hence,
f−1(y) = A−1g−1(D−1y)

where (A,D−1) is a solution of the system of equations

D−1Cl = g(APl), l = 1, 2, . . . ,m,

which is solved by the method of LS, that is, by assigning in turn the different values to
the variable A and solving the resulting system of linear equations with unknowns in D−1.
So, the computational complexity of the attack is O(n!).

11. J = {π1, π2, σ1} ' {A,D, b}.
y = f(x) = π2(g(π1(x

σ1))) = Dg(A(x⊕b)); D−1y = g(A(x⊕b)), A−1g−1(D−1y) = x⊕b,
f−1(y) = x. Hence,

f−1(y) = A−1g−1(D−1y)⊕ b

where (A,D−1, b) is a solution of the system of equations

A−1g−1(D−1Cl)⊕ b = Pl, l = 1, 2, . . . ,m,

which is solved by the method of LS, that is, by assigning in turn the different values to the
variable D−1 and solving the resulting system of linear equations with unknowns in A, b.
The computational complexity of the attack is O(n!).

12. J = {π2, σ2} ' {D, d}.
y = f(x) = π2(g

σ2(x)) = D(g(x)⊕d); D−1y = g(x)⊕d, g−1(D−1y⊕d) = x, f−1(y) = x.
Hence,

f−1(y) = g−1(D−1y ⊕ d)

where (D−1, d) is a solution of the system of linear equations

D−1Cl ⊕ d = g(Pl), l = 1, 2, . . . ,m,

which is solved with a polynomial complexity.
13. J = {π2, σ1, σ2} ' {D, b, d}.
y = f(x) = π2(g

σ2(xσ1)) = D(g(x⊕ b)⊕d); D−1y = g(x⊕ b)⊕d, g−1(D−1y⊕d) = x⊕ b,
f−1(y) = x. Hence,

f−1(y) = g−1(D−1y ⊕ d)⊕ b
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where (D−1, b, d) is a solution of the system of equations

D−1Cl ⊕ d = g(Pl ⊕ b), l = 1, 2, . . . ,m,

which is solved by the method of LS, that is, by assigning in turn the different values to
the variable b and solving the resulting system of linear equations with unknowns in D−1
and d. So, the computational complexity of the attack is O(2n).

14. J = {π1, π2, σ2} ' {A,D, d}.
y = f(x) = π2(g

σ2(π1(x))) = D(g(Ax)⊕ d); D−1y = g(Ax)⊕ d, A−1g−1(D−1y⊕ d) = x,
f−1(y) = x. Hence,

f−1(y) = A−1g−1(D−1y ⊕ d)

where (D−1, d, A) is a solution of the system of equations

D−1Cl ⊕ d = g(APl), l = 1, 2, . . . ,m,

which is solved by the method of LS, that is, by assigning in turn the different values to
the variable A and solving the resulting system of linear equations with unknowns in D−1
and d. So, the computational complexity of the attack is O(n!).

5.2. A t t a c k s o n s i g n a t u r e s c h e m e s
Given J ⊂ {π1, π2, σ1, σ2} ' {A,D, b, d}, f(x) ∈ Kn(g, j), Ml ∈ Fn2 , and Sl = f−1(Ml),

l = 1, 2, . . . ,m, compute f−1(x). Consider the possible cases. As mentioned above, in every
case the attack on a signature scheme differs from the attack on a cipher just given by
only using variables x,Ml, and Sl instead of y, Cl, and Pl respectively. Taking into account
that the attacks on the signature schemes have the great and distinctive significance for
cryptography, we describe them without abbreviations.

1. J = {σ1} ' {b}.
In this case, Sl = g−1(Ml)⊕ b, l = 1, 2, . . . ,m, and

f−1(x) = g−1(x)⊕ b

where
b = Sl ⊕ g−1(Ml), l = 1, 2, . . . ,m.

The computational complexity of the attack is a polynomial in n.
2. J = {π1} ' {A}.
Sl = A−1g−1(Ml), l = 1, 2, . . . ,m, and

f−1(x) = A−1g−1(x)

where A is a solution of the system of linear equations

ASl = g−1(Ml), l = 1, 2, . . . ,m,

which is solved for a polynomial time.
3. J = {π1, σ1} ' {A, b}.
Sl = A−1g−1(Ml) ⊕ b, A(Sl ⊕ b) = g−1(Ml), w(Sl ⊕ b) = w(g−1(Ml)), l = 1, 2, . . . ,m,

B1 = {b : w(S1 ⊕ b) = w(g−1(M1))}, and Bl = {b : b ∈ Bl−1,w(Sl ⊕ b) = w(g−1(Ml))},
2 6 l 6 m. So,

f−1(x) = A−1g−1(x)⊕ b
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where (A, b) is a solution of the system of equations

A(Sl ⊕ b) = g−1(Ml), l = 1, 2, . . . ,m,

which is solved by the method of LS, that is, by assigning in turn the different values
fromBm to the variable b and solving the resulting system of linear equations with unknowns
in A. The computational complexity of the attack is O(Cn/2

n ).
4. J = {σ2} ' {d}.
Sl = g−1(Ml ⊕ d), l = 1, 2, . . . ,m, and

f−1(x) = g−1(x⊕ d)

where
d = Ml ⊕ g(Sl), l = 1, 2, . . . ,m.

Computational complexity of the attack is a polynomial in n.
5. J = {σ1, σ2} ' {b, d}.
Sl = g−1(Ml ⊕ d)⊕ b, l = 1, 2, . . . ,m, and

f−1(x) = g−1(x⊕ d)⊕ b

where (b, d) is a solution of the following system of equations

g(Sl ⊕ b) = Ml ⊕ d, l = 1, 2, . . . ,m,

which is solved, using the method of LS, that is, by assigning in turn the different values
to the variable b and solving the resulting system of linear equations with unknowns in d.
The computational complexity of the attack is O(2n).

6. J = {π1, σ2} ' {A, d}.
Sl = A−1g−1(Ml ⊕ d), A(Sl ⊕ d) = g−1(Ml), w(Sl ⊕ d) = w(g−1(Ml)), l = 1, 2, . . . ,m,

D1 = {d : w(S1 ⊕ d) = w(g−1(M1))}, and Dl = {d : d ∈ Dl−1,w(Sl ⊕ d) = w(g−1(Ml))},
2 6 l 6 m. So,

f−1(x) = A−1g−1(x⊕ d)

where (A, d) is a solution of the system of equations

ASl = g−1(Ml ⊕ d), l = 1, 2, . . . ,m,

which is solved, using the method of LS, that is, by assigning in turn the different values
from Dm to the variable d and solving the resulting system of linear equations with
unknowns in A. The computational complexity of the attack is O(Cn/2

n ).
7. J = {π1, σ1, σ2} ' {A, b, d}.
Sl = A−1g−1(Ml ⊕ d) ⊕ b, A(Sl ⊕ b) = g−1(Ml ⊕ d), w(Sl ⊕ b) = w(g−1(Ml ⊕ d)), l =

= 1, 2, . . . ,m, B1(d) = {b : w(S1 ⊕ b) = w(g−1(M1 ⊕ d))}, and Bl(d) = {b : b ∈ Bl−1(d),
w(Sl ⊕ b) = w(g−1(Ml ⊕ d))}, d ∈ Fn2 , 2 6 l 6 m. So,

f−1(x) = A−1g−1(x⊕ d)⊕ b,

where (A, b, d) is a solution of the system of equations

A(Sl ⊕ b) = g−1(Ml ⊕ d), l = 1, 2, . . . ,m,
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which is solved, using the method of LS, that is, by assigning in turn the different values
(b, d) with d from Fn2 and b from Bm(d) to the pair of variables (b, d) and solving the
resulting system of linear equations with unknowns in A. The computational complexity of
the attack is O(2nCn/2

n ).
8. J = {π2} ' {D}.
Sl = g−1(D−1Ml), l = 1, 2, . . . ,m, and

f−1(x) = g−1(D−1x)

where D−1 is a solution of the system of linear equations

D−1Ml = g(Sl), l = 1, 2, . . . ,m.

Computational complexity of this attack is a polynomial in n.
9. J = {π2, σ1} ' {D, b}.
Sl = g−1(D−1Ml) ⊕ b, g(Sl ⊕ b) = D−1Ml, w(Ml) = w(g(Sl ⊕ b)), l = 1, 2, . . . ,m,

B1 = {b : w(M1) = w(g(S1 ⊕ b))}, and Bl = {b : b ∈ Bl−1,w(Ml) = w(g(Sl ⊕ b))},
2 6 l 6 m. So,

f−1(x) = g−1(D−1x)⊕ b

where (D−1, b) is a solution of the system of equations

D−1Ml = g(Sl ⊕ b), l = 1, 2, . . . ,m,

which is solved, using the method of LS, that is, by assigning in turn the different values
fromBm to the variable b and solving the resulting system of linear equations with unknowns
in D−1. The computational complexity of the attack is O(Cn/2

n ).
10. J = {π1, π2} ' {A,D}.
Sl = A−1g−1(D−1Ml), l = 1, 2, . . . ,m, and

f−1(x) = A−1g−1(D−1x)

where (A,D−1) is a solution of the system of equations

D−1Ml = g(ASl), l = 1, 2, . . . ,m,

which is solved, using the method of LS, that is, by assigning in turn the different values to
the variable A and solving the resulting system of linear equations with unknowns in D−1.
So, the computational complexity of the attack is O(n!).

11. J = {π1, π2, σ1} ' {A,D, b}.
Sl = A−1g−1(D−1Ml)⊕ b, l = 1, 2, . . . ,m, and

f−1(x) = A−1g−1(D−1x)⊕ b

where (A,D−1, b) is a solution of the system of equations

A−1g−1(D−1Ml)⊕ b = Sl, l = 1, 2, . . . ,m,

which is solved, using the method of LS, that is, by assigning in turn the different values
to the variables D−1 and solving the resulting system of linear equations with unknowns
in A, b. The computational complexity of the attack is O(n!).
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12. J = {π2, σ2} ' {D, d}.
Sl = g−1(D−1Ml ⊕ d), l = 1, 2, . . . ,m, and

f−1(x) = g−1(D−1x⊕ d)

where (D−1, d) is a solution of the system of equations

D−1Ml ⊕ d = g(Sl), l = 1, 2, . . . ,m,

which is solved with a polynomial complexity.
13. J = {π2, σ1, σ2} ' {D, b, d}.
Sl = g−1(D−1Ml ⊕ d)⊕ b, l = 1, 2, . . . ,m, and

f−1(x) = g−1(D−1x⊕ d)⊕ b
where (D−1, d, b) is a solution of the system of equations

D−1Ml ⊕ d = g(Sl ⊕ b), l = 1, 2, . . . ,m,

which is solved, using the method of LS, by assigning in turn the different values to the
variable b and solving the resulting system of linear equations with unknowns in D−1 and d.
So, the computational complexity of the attack is O(2n).

14. J = {π1, π2, σ2} ' {A,D, d}. Sl = A−1g−1(D−1Ml ⊕ d), l = 1, 2, . . . ,m, and

f−1(x) = A−1g−1(D−1x⊕ d)

where (D−1, d, A) is a solution of the system of equations

D−1Ml ⊕ d = g(ASl), l = 1, 2, . . . ,m,

which is solved, using the method of LS, by assigning in turn the different values to the
variable A and solving the resulting system of linear equations with unknowns in D−1 and d.
So, the computational complexity of the attack is O(n!).

Conclusion
What we have discussed above in the paper should be considered as a step in the process

of developing the theory of public key cryptosystems based on the bijective systems of
Boolean functions. There are many problems we need solve on this way. Some of them are the
following: 1) generating pseudorandom invertible systems of Boolean functions depending on
a covered parameter such that the system is computed and inverted with a polynomial time
complexity iff the value of the parameter is known; 2) necessary and sufficient conditions
for uniqueness of a private key, with which the given blocks of a ciphertext are decrypted
to the given blocks of a plaintext; 3) lower and upper bounds for the number of blocks with
this property of the private key.
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