$$\begin{cases} G_r(d) = G_r(d-r) + G_r(d-r-1), \text{ если } d > r, \\ G_r(r) = 2, \\ G_r(d) = 0, \text{ если } 0 \leqslant d < r. \end{cases}$$

При помощи конструкции из теоремы 2, применённой к паре граней в пространствах соответствующих размерностей, построено семейство множеств $\{Y_n^d\}$ $(n \geqslant 2d)$, имеющих большую (относительно мощности всего пространства) мощность. Индекс n отражает размерность булева куба, в котором лежит соответствующее множество, а d—его радиус покрытия. На основе сферы радиуса d в пространстве \mathbb{F}_2^{2d} построено семейство множеств $\{Z_n^d\}$ (также для $n \geqslant 2d$). Вычислив точные размеры множеств семейств (либо оценив их снизу), получаем нижнюю оценку на мощность наибольших метрически регулярных множеств.

Теорема 4. Пусть A — наибольшее метрически регулярное множество с радиусом покрытия d в булевом кубе размерности n ($n \ge 2d$), r — остаток от деления n+1 на 2d+1. Тогда $|A| \ge \max\left\{2^{n-2d} \binom{2d}{d}, \, 2^n \left(\frac{2}{2d+1} - \frac{2}{\sqrt{n-r+1}}\right)\right\}$.

Заметим, что при достаточно больших d,n первое число приблизительно равно $1/\sqrt{\pi d}$ от мощности булева куба, второе -2/(2d+1) от мощности булева куба.

ЛИТЕРАТУРА

- 1. *Облаухов А. К.* О метрическом дополнении подпространств булева куба // Дискретный анализ и исследование операций. 2016. Т. 23. № 3. С. 93–106.
- 2. Tokareva N. Duality between bent functions and affine functions // Discr. Math. 2012. V. 312. No. 3. P. 666–670.
- 3. Cusick T. W. and Stanica P. Cryptographic Boolean Functions and Applications. Academic Press, 2017. 288 p.

УДК 519.1

DOI 10.17223/2226308X/11/5

УЛУЧШЕННАЯ ФОРМУЛА УНИВЕРСАЛЬНОЙ ОЦЕНКИ ЭКСПОНЕНТА ОРГРАФА¹

В. М. Фомичев

Улучшена формула универсальной оценки экспонента n-вершинного примитивного орграфа, данная А. Далмэджем и Н. Мендельсоном (1964) с использованием множества контуров, длины которых взаимно простые. Предложенная формула использует в орграфе множество контуров \hat{C} с множеством длин $L(\hat{C}) = \{l_1,\ldots,l_m\}$, где $d=(l_1,\ldots,l_m)\geqslant 1$, и множество длин кратчайших путей $\{r_{i,j}^{s/d}(\hat{C}):s=0,\ldots,d-1\}$ из вершины i в вершину j, проходящих через множество контуров \hat{C} и образующих полную систему вычетов по модулю d. Показано, что $\exp\Gamma\leqslant 1+\hat{F}(L(\hat{C}))+R(\hat{C})$, где $\hat{F}(L)=d\cdot F(l_1/d,\ldots,l_m/d)$; $F(a_1,\ldots,a_m)$ — число Фробениуса; $R(\hat{C})=\max_{(i,j)}\max_{s}\{r_{i,j}^{s/d}(\hat{C})\}$. Указан класс орграфов с множеством вершин $\{0,\ldots,2k-1\},\ k>2$, для которых предложенные оценки экспонентов лучше известных на величину k-2.

Ключевые слова: число Фробениуса, примитивный орграф, экспонент орграфа.

 $^{^{1}}$ Работа выполнена в соответствии с грантом РФФИ № 16-01-00226.

Введение

Обозначим: $\mathbb{Z}_n = \{0, \dots, n-1\}$ — кольцо вычетов по модулю $n, n \in \mathbb{N}; M_n^{0,1}$ — множество 0, 1-матриц порядка $n; \exp \Gamma$ — экспонент орграфа Γ .

Рассмотрим неотрицательную матрицу M (все её элементы суть неотрицательные действительные числа), свойство неотрицательности записывают так: $M \geqslant 0$. Матрицу M, все элементы которой положительные, называют положительной (M > 0).

Для квадратной неотрицательной матрицы M в [1] был поставлен вопрос: имеются ли положительные матрицы в ряду $\{M^i:i=1,2,\ldots\}$? То есть содержит ли циклическая полугруппа $\langle M \rangle$ положительные матрицы? Если содержит, то матрицу M называют примитивной, в противном случае — непримитивной. Наименьшее натуральное γ , при котором $M^{\gamma}>0$, называется экспонентом матрицы M, обозначается $\exp M$. Если матрица M непримитивная, то положим $\exp M=\infty$. В случае примитивной матрицы $M^{\gamma+i}>0$ при любом $i\in\mathbb{N}$.

Мультипликативная полугруппа всех неотрицательных матриц гомоморфно отображается на полугруппу всех 0, 1-матриц (все элементы суть целые числа 0 или 1) с помощью замены каждого положительного элемента единицей. Этот эпиморфизм согласован со свойством примитивности: прообразом любой примитивной (непримитивной) 0, 1-матрицы является класс, состоящий только из примитивных (непримитивных) матриц. Данное свойство позволяет ограничиться исследованием мультипликативных моноидов $M_n^{0,1}$, $n \in \mathbb{N}$, где умножение выполняется как обычное умножение целочисленных матриц с последующей заменой положительных элементов единицами.

Множество матриц смежности вершин n-вершинных ориентированных графов с петлями совпадает с $M_n^{0,1}$, и на орграфы распространены понятия примитивности и экспонента, где умножение орграфов определено как умножение бинарных отношений. Заметим, что примитивный граф является сильносвязным.

Далее обозначаем через M матрицу смежности вершин орграфа Γ с множеством вершин \mathbb{Z}_n . Связь между графами и неотрицательными матрицами устанавливает общеизвестная теорема теории графов (назовём её основной теоремой): число путей длины t из i в j в графе Γ равно $m_{ij}^{(t)}$, $i,j\in\{1,\ldots,n\}$, где $M^t=\left(m_{ij}^{(t)}\right)$. Таким образом, примитивность орграфа и величина экспонента определяется свойствами путей в графе, в частности M>0, если и только если орграф Γ полный. Утверждения о примитивности и об экспонентах равносильно формулируются и на матричном, и на графовом языке.

Известные оценки экспонентов матриц и орграфов можно разделить на универсальные и специальные (для частных классов). Работа посвящена улучшению универсальной оценки экспонента примитивного орграфа.

1. Известные универсальные оценки экспонентов

Основополагающие результаты получены в середине XX в. авторами [2-4], предложившими термин «экспонент».

Обозначим: $\hat{C} = \{C_1, \dots, C_m\}$ — множество контуров длин l_1, \dots, l_m соответственно, $L(\hat{C}) = \{l_1, \dots, l_m\}$. Индексом множества контуров \hat{C} (обозначается ind \hat{C}) назовём число $d = \text{HOД}(L(\hat{C}))$. Критерий примитивности орграфа Γ [3] определяется множеством его контуров: сильносвязный орграф Γ примитивный, если и только если содержит множество контуров индекса 1.

Универсальная оценка экспонента примитивного орграфа дана Виландтом [2] в $1950\,\mathrm{r.}$:

$$\exp\Gamma \leqslant n^2 - 2n + 2. \tag{1}$$

Доказательство оценки (1) представлено в [3, 5]. При n > 1 описаны n-вершинные орграфы [4, 6] (названные в [6] в честь Виландта), на которых достигается оценка (1). Эти орграфы изоморфны, имеют n+1 дугу и содержат ровно два простых контура длин n и n-1.

В [4] уточнена оценка (1) при известной длине l контура в орграфе:

$$\exp\Gamma \leqslant n + l(n-2).$$

Для более точных оценок введём определения. Говорят, что «путь проходит через контур», если у пути и контура есть общая вершина. Путь проходит через множество контуров, если он проходит через каждый контур множества. В орграфе Γ обозначим: \mathcal{C} — множество всех простых контуров; \mathcal{C}_d — класс всех множеств простых контуров индекса d; $r_{i,j}(\hat{C})$ — длина кратчайшего пути из i в j, проходящего через множество контуров \hat{C} ; $r(\hat{C})$ = $\max_{(i,j)} r_{i,j}(\hat{C})$. Оценочная формула Далмэджа и Мендельсона [4] определяется неравенством

$$\exp\Gamma \leqslant 1 + F(L(\hat{C})) + r(\hat{C}),\tag{2}$$

где $\hat{C}-$ любое множество контуров индекса 1; F-число Фробениуса. Уточним (2):

$$\exp\Gamma \leqslant 1 + \min_{\hat{C} \in \mathcal{C}_1} \left\{ F(L(\hat{C})) + r(\hat{C}) \right\}. \tag{3}$$

Для получения из (2) числовых оценок экспонента достаточно определить число Фробениуса $F(L(\hat{C}))$ [7, 8] и величину $r(\hat{C})$. С помощью оценки величины $r(\hat{C})$ [9, ч. 1, с. 185] получено

$$\exp\Gamma \leqslant n(m+1) + F(L(\hat{C})) - l_1 - \dots - l_m. \tag{4}$$

Учёт структуры множества \hat{C} улучшает оценку (4) [10, с. 80]. Обозначим $\Gamma(\hat{C}) = C_1 \cup \ldots \cup C_m$ — часть орграфа Γ , где $l_1 \leqslant \ldots \leqslant l_m$. Если орграф $\Gamma(\hat{C})$ сильносвязный, то он содержит контур K, проходящий через множество контуров \hat{C} и проходящий через каждую дугу столько раз, сколько контуров множества \hat{C} содержат эту дугу. Контур K в общем случае определён неоднозначно и называется квазиэйлеровым \hat{C} -контуром, его длина $\ker K = l_1 + \ldots + l_m$. Если $\Gamma(\hat{C})$ имеет компоненты связности $\hat{C}_1, \ldots, \hat{C}_r$, $1 \leqslant r \leqslant m$, содержащие независимые квазиэйлеровы контуры K_1, \ldots, K_r длин μ_1, \ldots, μ_r соответственно, то, полагая без ущерба для общности $\mu_1 \geqslant \ldots \geqslant \mu_r$, получаем оценку

$$\exp \Gamma \le n(r+1) + F\left(L(\hat{C})\right) - \sum_{j=1}^{r} (l_j + (j-1)\mu_j).$$
 (5)

В частности, если орграф $\Gamma(\hat{C})$ связный, то $\exp\Gamma\leqslant 2n-l_1+F\left(L(\hat{C})\right)$.

Оценка (5) следует из (2) и из оценки величины $r(\hat{C})$ для примитивных орграфов.

2. Улучшение универсальной оценки экспонента орграфа

Для усиления формулы (3) используем понятие локального экспонента орграфа [11]. Орграф Γ называют (i,j)-примитивным, $i,j \in \mathbb{Z}_n$, если при некотором $\gamma \in \mathbb{N}$ для любого $t \geqslant \gamma$ в орграфе Γ имеется путь длины t из вершины i в вершину j. Наименьшее такое γ называется (i,j)-экспонентом орграфа Γ и обозначается

(i,j)-ехр Γ . Примитивный орграф Γ является (i,j)-примитивным для любых $i,j\in\mathbb{Z}_n$ и ехр $\Gamma=\max_{0\leqslant i,j\leqslant n-1}(i,j)$ -ехр Γ .

Обозначим: $\hat{F}(L) = d \cdot F(l_1/d, \dots, l_m/d)$, где $L = \{l_1, \dots, l_m\}$, d = HOД(L) ($\hat{F}(L) = F(L)$ при d = 1); $r_{i,j}^{s/d}(\hat{C})$ — длина кратчайшего пути w из i в j, проходящего через множество контуров \hat{C} , сравнимая с $s \mod d$, $s = 0, \dots, d-1$ (такие пути в Γ есть); $R_{i,j}(\hat{C}) = \max \left\{ r_{i,j}^{0/d}(\hat{C}), \dots, r_{i,j}^{d-1/d}(\hat{C}) \right\}$; $R(\hat{C}) = \max_{0 \leqslant i,j \leqslant n-1} R_{i,j}(\hat{C})$. Заметим, что $r_{i,j}(\hat{C}) = \min \left\{ r_{i,j}^{0/d}(\hat{C}), \dots, r_{i,j}^{d-1/d}(\hat{C}) \right\}$, если \hat{C} — множество контуров индекса 1.

Теорема 1. Для любого непустого множества контуров \hat{C} индекса более 1

$$(i,j)-\exp\Gamma \leqslant 1 + \hat{F}\left(L(\hat{C})\right) + R_{i,j}(\hat{C}),$$

$$\exp\Gamma \leqslant 1 + \hat{F}\left(L(\hat{C})\right) + R(\hat{C}). \tag{6}$$

Следствие 1. Для любого примитивного орграфа Г

$$\exp\Gamma \leqslant 1 + \min_{\hat{C} \subset \mathcal{C}, \, \hat{C} \neq \varnothing} \left\{ \hat{F} \left(L(\hat{C}) \right) + R(\hat{C}) \right\}. \tag{7}$$

Замечание 1. Уточнение (по сравнению с (3)) оценки экспонента с помощью формулы (7) возможно только при оценке (6) для множества \hat{C} индекса больше 1.

Найден класс орграфов, для которого формула (6) дает оценки существенно лучше, чем (3).

Теорема 2. Пусть множество вершин орграфа Γ есть \mathbb{Z}_{2k} , k > 1, множество дуг содержит дуги контуров $C_0 = (k-1, 2k-1)$, $C_1 = (0, \dots, k-2, 2k-1)$, $C_2 = (k-1, \dots, 2k-2)$, и ещё дуги (k-2, k-1) и (2k-2, 2k-1) (рис. 1). Тогда для орграфа Γ :

- оценка (3) принимает значение 3k-2 при чётных k и 3k-3 при нечётных k;
- оценка (6) принимает значение 2k при чётных k и 2k-1 при нечётных k.

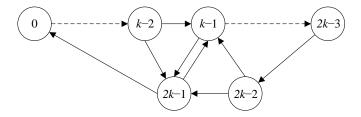


Рис. 1. Орграф Γ (теорема 2)

Множество простых контуров орграфа Γ есть $\mathcal{C} = \{C_0, C_1, C_2, C_3, C_4, C_5\}$, где $C_3 = (0, \dots, k-1, 2k-1)$, $C_4 = (k-1, \dots, 2k-2, 2k-1)$ и C_5 есть гамильтонов контур $(0, 1, \dots, 2k-1)$. Множество длин всех простых контуров есть $L(\mathcal{C}) = \{2, k, k+1, 2k\}$, ind $\mathcal{C} = 1$.

Пусть $\hat{C} \subseteq \mathcal{C}$. При нечётном k ind $\hat{C}=1$, если и только если $2,k\in L(\hat{C})$ или $k,k+1\in L(\hat{C})$. Класс \mathcal{C}_1 состоит из 42 множеств (при чётном k также).

В данном орграфе величина $F(L(\hat{C})) + r(\hat{C})$ принимает наименьшее значение при $\hat{C} = \mathcal{C}$. Обозначим через $\rho(i,j)$ длину кратчайшего пути из i в j, тогда $\max_{0 \le i,j \le 2k-1} \rho(i,j) = \rho(0,2k-2) = \rho(k,k-2) = 2k-2$. Кратчайшие пути $w = (0,\ldots,2k-2)$ и $w' = (k,\ldots,k-2)$ суть части гамильтонова контура и проходят через вершины k-1 и

2k-1 соответственно. Значит, через любое множество контуров индекса 1 проходит либо w, либо w'. Отсюда $r(\hat{C}) = 2k-2$ для любого $\hat{C} \in \mathcal{C}_1$.

Заметим: $F(L) \leqslant F(L')$ при HOД(L') = HOД(L) = 1, если $L' \subseteq L$. Отсюда $F(L(\hat{C})) \geqslant F(L(\mathcal{C})) = F(2,k,k+1,2k)$ для любого множества \hat{C} индекса 1. Отсюда получаем нужные значения оценки (3), так как $F(L(\mathcal{C})) = F(2,k) = k-2$ при нечётных k и $F(L(\mathcal{C})) = F(2,k+1) = k-1$ при чётных k.

Получим оценку (6) для контура C_0 длины 2. При нечётных k: $R(C_0) = R_{2k-1,2k-2}(C_0) = 2k$. При чётных k: $R(C_0) = R_{2k-1,2k-2}(C_0) = \max\{\ln w, \ln w'\} = 2k+1$. В обоих случаях имеем нужные значения оценки (6), так как $\hat{F}(C_0) = \hat{F}(2) = -2$.

В таблице приведены экспоненты орграфов (теорема 2) и их оценки (3), (6) при $k=2,\ldots,7$.

Число вершин орграфа 2k	Оценка (3) ехр Г	Оценка (6) $\exp \Gamma$ для контура C_0	$\exp\Gamma$
4	4	4	4
6	6	5	5
8	10	8	8
10	12	9	9
12	16	12	11
14	18	13	13

ЛИТЕРАТУРА

- 1. Frobenius G. Uber Matrizen aus nicht negativen Elementen // K. Preuss. Akad. Wiss. Berlin. 1912. S. 456–477.
- 2. Wielandt H. Unzerlegbare nicht negative Matrizen // Math. Zeitschr. 1950. N. 52. S. 642–648.
- 3. Perkins P. A theorem on regular graphs // Pacific J. Math. 1961. V. II. P. 1529–1533.
- 4. Dulmage A. L. and Mendelsohn N. S. Gaps in the exponent set of primitive matrices // Illinoise J. Math. 1958. No. 86. P. 642–656.
- 5. Holladay J. C. and Varga R. S. On powers of non-negative matrices // Proc. Amer. Math. Soc. 1958. V. IX. P. 631.
- 6. Фомичев В. М. Оценки экспонентов примитивных графов // Прикладная дискретная математика. 2011. № 2(12). С. 101–112.
- 7. *Фомичев В. М.* О вычислительной сложности оригинальной и расширенной диофантовой проблемы Фробениуса // Дискретный анализ и исследование операций. 2017. Т. 24. № 3. С. 104–124.
- 8. Alfonsin J. R. The Diophantine Frobenius Problem. Oxford University Press, 2005.
- 9. *Фомичев В. М., Мельников Д. А.* Криптографические методы защиты информации. В 2 ч. Ч. 1. Математические аспекты. М.: Юрайт, 2016. 209 с.
- 10. Фомичев В. М. Новая универсальная оценка экспонентов графов // Прикладная дискретная математика. 2016. № 3(33). С. 78–84.
- 11. *Фомичев В. М., Кяжин С. Н.* Локальная примитивность матриц и графов // Дискретный анализ и исследование операций. 2017. Т. 24. № 1. С. 97–119.