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HokazarenbcTBo ocroBano na Teopeme . H. Coxarkoro [4] o pemenun 0606IIEHHOTO
ypaBHEHUs 00IIeil acCONUATUBHOCTH JIJIf CUJIBHO 3aBUCHMBIX OIEDAITHil.

Kax cnencrsue n3 npeabLynieil TeOpeMsl, HOJTydaeTcs cieayomiee 0000IeHne TeopeMbI
[nyckuna — Xoccy Ha ciydail CHIBHO 3aBUCUMBIX (DYHKITHIA.

Teopema 4. Eciau cuibHO 3aBucuMasi n-apHast OlepaIys [Tq,...,~T,| HA KOHETHOM
MHOKecTBe X YJIOBJIETBOPSIET TOXKECTBY aCCOIUATHBHOCTH

[[951, . ;%],xmrh <. ,xzn—ﬂ = [$17 [57027 e ;$n+1],$n+2, e 7$2n—1]7

TO JJIsl HEKOTOPOI'O MOHOMJIA «%» Ha MHOKecTBe X , aBTOMOP(U3Ma § MOHOM 1A, «*», TAKOTO,
aro 0" (z) = axx*xa™t, a € X — obpaTumblii 31eMenT MOHOUIA «*», O(a) = a, cipaBeIuBo
TOKJIECTBO

(21, .., 2n] = 21 % 0(20) % 0% (23) % ... % 0" (1) *a*z,, x;€X,i=1,...,n

B zaksmouenne npuseiém obobienne obparnoit reopembl [iryckuaa — Xoccey.

Teopema 5. Eciu 111 cuibHO 3aBUCHMOI n-apHOii oneparyu [y, . . . , T,] cupaBem-
BO TIpeJICTaBJIeHTE

(21, .., m0] = 21 % 0(22) % 0% (23) % ... % 0" 2 (2,1) % a % 1y,

rj1e «*» — MOHOUJI Ha MHOXKecTBe X ; f — aBTOMOPMU3M MOHOUJIA «*», Takoil, uro 0" (x) =
Vs z xa, a € X —obparumplii seMent Monomga «*», 6(a) = a, To ona sBasgeTCs
N-IOJIyT'PYIIION.

= a
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NFS FACTORIZATION: NEW HOPES
P. Kirchner

We describe new Number Field Sieve techniques. While none is proved (even under
heuristics) to work for a concrete family of number fields, we hope such a family exist.
If this is the case, we can factor a special integer n in time L, (1/3,(16/9)'/3), which
doubles the length of n with respect to SNFS for the same time. This algorithm works
by finding a strongly-ambiguous ideal in order to factor the relative discriminant of
a prime degree Galois extension. In case this method can be adapted for factoring
general numbers, it may reach a complexity Ly, (1/3,(32/9)'/3). A variant of the same
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technique for computing number fields of constant degree d would allow multiplying
by d the length of the discriminant at the same complexity. We emphasize that for
these running times to hold, we need to build highly specific number fields, and there is
no evidence it can be done. Finally, we give another technique for finding the maximum
order of number fields, and may run as fast as Lj5|(1/3, (16/9)/3). This method is
likely to work, and can therefore find some square factors in some numbers.
Keywords: integer factorization, number field sieve.

1. Introduction

In 1993, the Number Field Sieve algorithm was invented [1] with a complexity of
L,(1/3,(64/9)Y/?) for factoring any n, and since then, it has been mostly unchallenged
(though a variant is asymptotically faster [2]). A variant for special numbers was also
given, with a complexity of L,(1/3,(32/9)/3).

We give a method for factoring very special n (so special that we do not know how to
find them, or if they even exist) with a complexity of only L, (1/3,(16/9)Y/?), if we can
find a number field with the desired properties. This algorithm is in fact a generalization
of the class group relations method [3, 4].

We also give a method for finding the maximal order of a number field, which may
run just as fast, and needs no unknown construction. It might possibly be used for finding
square factors in an integer.

We will use standard algorithms in number theory, such as the ones for computing the
class group and units of a number field, without describing them. A complete description
can be found in Cohen’s book [5].

2. Background

We fix a Galois extension of number fields [L : K] = p, p is prime, and the Galois
group is generated by o. The goal is to factor the discriminant ideal Ay x, and we assume
L = Q[X]/f(X) with f of degree d, and the height (maximal absolute value of coefficients)
of f being ~ N(Ark)"?/@=1 where N() denotes the norm of the ideal (the discriminant
is a homogeneous polynomial of degree 2d — 2 in the coefficients of f). We let Oy, be the
ring of integers of L.

The principle consists in finding a non-trivial ideal a such that o(a) = a. These ideals
are called strongly ambiguous [6], and known to be exactly the divisors of a power of Ay /x
up to an ideal of K. Therefore, gcd(Ark,a) is non-trivial.

For example, Q[X]/(X*+13X3 —43X?—39X +9) is a degree two extension of Q[v/317],
and the norm of the relative discriminant is 4429 = 43 - 103.

While the technique works for all p, it is unlikely to be useful for any p > 2 since the
relative discriminant is a p — 1 power.

3. CM case

We assume here L is a (strict) CM-field and K is principal (a small A(K) does not
pose any problem). Then ac(a) = a? is an ideal of K so that it is principal. The algorithm
therefore computes the class group, and we can then hopefully enumerate all classes [a]
whose square is principal.

a

Therefore, we can find a such that there exists v with o(va) = va. Then o) = w(’)L,

o v

and Gentry-Szydlo 7] recovers v, from which we deduce va (in fact, one can do the same
if I has a tiny regulator (a “simplest field”) by replacing Gentry-Szydlo with Schoof’s
algorithm [8]).
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How to find a “random” ideal whose square is principal: generate relations as usual, and
put them in a sparse integer matrix A. It has the property that for all column j, [] piA"’j is

principal and known where p; are all prime ideals less than some bound. Then compute x
such that Az = 0[2], and return the ideal corresponding to (Ax)/2, namely

H p(Am/Q)i_

The overall complexity is Ly, ) (1/3, (16/ 9)'/3) for a well-chosen d.
4. Non-CM

We assume here L is not a CM-field, so that each class of ideals is represented by a small
integral ideal a (this excludes the families of the rare “simplest fields”, though). Therefore, we

a
can find a such that o(va) = va. We first compute g a generator of ) o) OL. Then, we
o v

compute the units of L, and K. From there, we can in polynomial time deduce u € LL a unit,
such that Ny x(gu) =1 (0(v)/v/g is such a unit). Then, we solve' o(w) = wgu (w # 0), an
equation which is linear in w (there is a solution, because of Hilbert’s Theorem 90). Finally,
o(wa) = wa.

The overall complexity is Lara, ) (1/3, (16/ 9)/3) for a well-chosen d, if we can multiply

matrices in time n?*°(!). The sparse linear algebra exponent is in fact a bit higher (2.38),
so the complexity will also be a bit higher.

If we take the field Q[X]/(X* + 13X? — 43X? — 39X + 9), and the ideal Oy, units
are generators, and generated by ug = 5/3X? + 65/3X?% — 200/3X — 77, u; = 121/3X3 —
—320/3X? —286/3X + 22 and uy = 2183/3X3 +26399/3X? — 117815/3X + 7238. u; is of
norm 1, which indicates the element wy = 92X? + 1471X + 283 with wq/o(wg) = vy, and
is of norm 103 x 4212, revealing the factor 103 of the discriminant. uy 'uiu? is of norm 1,
which indicates the corresponding element w; = 557995X? +9207617X + 7889384, of norm
43 x 1620922, revealing the other factor 43 of the discriminant.

Average-case factorization? It may seem that by relaxing the height of f to ~ n'/¢,
we may hope to factor the integer n in time which is only L,(1/3,(32/9)1/?) for most n.
Of course, we also need the density of such f with a suitable subfield to be not too tiny,
and a fast way to generate such a f.

5. Computing constant degree fields

The best known heuristic algorithm which computes a field K of constant degree d runs
in La(1/2,1), and A is the discriminant (up to sign).

Now, we propose to instead find some extension L of K of degree k& = w(1) but
sufficiently small. Then, we can hope that L. = Q[X]/f(X) with f a polynomial of height
~ (AR QdE=2) — A1/2d+0(1) §(1+0(1))/2dk where § is the norm of the relative discriminant.
Thus, the numbers which are to be smooth in the algorithm are of this size, instead of
A2 We can then deduce some units of K as norms of the units of L. The index is a
power of k, so that the units can be recovered through a saturation method. Also, if h(K)
is coprime with £, then the norm of the class group of L is the class group of K (otherwise,
we know that the p-Sylow differs only when p divides ged(k, h(K))). Furthermore, in case
the extension is abelian, class field theory describes the norm map.

!Since w may have huge coefficients, we solve the equation on the log-embedding, and convert back into
a formal product.
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In the case of § small, we can therefore compute fields whose discriminants are d times
the size of the previous algorithm.

We add that if a family of such extensions exists with d > 3, k prime and the extension
is Galois, then either we can factor § faster than the SNFS algorithm, or we can compute
the base field in a faster way than the previous algorithm. Hence, the last possibility for
this method to get only trivial results (if L exists), is that 6 must be smooth. While this is
the case when IL has lots of subfields, this should not be the general case.

6. Finding the maximal order
We collect relations in Z[X]/f(X) as usual, and form a matrix A;; such that prh’j

is generated by v;. The initial order O is Z[X]/f(X), and we make it p-maximal for each
prime number p in the factor base (see [5]).

Then, we choose some small prime p and we compute a random x such that Ax =
= 0 (mod p). The final step is to extract a p-th root of [[v]* and look for non trivial

K3
denominators in the coordinate. We may ensure it is an element of O, using characters
(as in [9])— or alternatively, hope that it is the case. Then, consider g a generator of

I1 pEAx)i/p. This ideal is “random” in C1(Q)/Cl(OL)[p], and in case it is not trivial, we get a

non trivial denominator. Consider now ¢~? [] v;"; this is a “random” (well-defined) element
i

in O /O*[p], and again if it is not trivial, we discover a non trivial denominator.
We have the exact sequence

1= Of/O* = (OL/§)*/(O/f)* = Cl(O) = Cl(OL) — 1
where the conductor fis {z € L; 2O, C O}. It implies that
[CL(O)/CUOLI|OL /O] = [(OL/F)*/(O/5)].

In particular, if p||(OL/f)*/(O/f)*|, we should obtain quickly the corresponding factors.

In our experiments, any large prime factor ¢ of the index gave rise either to a factor of ¢+ 1
do

or ¢ — 1, so that p = 2 seems enough. We may however find factors of the type

di|dy < d, which can be tackled with p|dy/d;.

Another technique is to compute |Cl(O)|, and then use it to factor the discriminant.
Indeed, we may hope to find large primes of |(Op/f)*|, and then use them in the p —1 [10],
p+1 [11] method, or a generalization of them [12] (while we might have been forced with the
p—1 method to factor the class number so that they do not find all factors of the conductor
at the same time, this does not happen with Bach — Shallit’s method). In the particular
case of imaginary quadratic fields of large discriminant, | is generated by an integer and

with
gt —1

we recover a product of p + ), see [13]. However, experiments seem to indicate that for

typical fields, large primes do not divide |C1(O)/Cl(Oy)| [14]. Perhaps [(OL/f)*/(O/f)*|
splits in the two components in a way similar to y/|Ag|. This excludes fields where units
are constrained, of course (such as CM-fields, simplest fields).

We can now take the inverse position of Buchmann — Lenstra [15]: since finding the
maximal order of some number field may be easier than factoring, we should try reducing
the factorization of a number with square factors to finding the maximal order of a number
field which is easy to compute.
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Our first example is Z[X]/(X? + 14748982211X?% + 330465312475655912644X —
— 4541929250363265152095834584323). The index of the order is 31415926535897932429,
the index of the unit group is 15707963267948966215 and the discriminant of the field is
the prime number —1031219470443951993545807. The maximal order is principal, the order
has a class number of 2.

Our second example is Z[X]/(X® + T78669X?% — 11461680097X + 400204890996).
Computing its class group, we find Z/1468825548960Z x (Z/2Z)*. Therefore, we compute
24:1468825548960 _1 1) 0dulo the discriminant of the order, 84855839117718748443550622974949,
and searching its inverse leads to the factor 314161. The maximal order has a class group
isomorphic to Z/93508127Z x Z /27, so that the index is 314160. X — 14417 and X — 35 are
generating units of the maximal order. The discriminant of the field is the prime number
859759911423970846469.

Both polynomials were found by searching the roots of the discriminant of a polynomial
modulo p?. When one of them is small, it implies a small (or convenient) f such that
Z]X]/f(X) has a discriminant divisible by p?. In all cases found, it has a suborder of index
divisible by p.

We give the following challenge:

Z[X]/(X® + 3495453004590491642X * + 180994857869926433565628676598524675713 X3+
14080542158246926001840448564437517681525979747052560162169 X % +-
+29991331159418592384221751381757741736460336893245994711847509109058566545411.X —
—615227362764912581790656075021572703951624280216014735196790277604247021415832383798968053378087).

The discriminant of the polynomial has 1287 bits, the discriminant of the field is a prime
number of 948 bits and the index is a prime number of 170 bits (51 digits). (In particular,
it is faster to use ECM to factor the discriminant.)

7. Conclusion

We conclude that when number fields verify the given conditions, then either the norm
of the relative discriminant is easily factored, either the unit group? and the class group
are not both explicit. There are known examples of the first case (any cyclotomic field),
and of the second case (respectively “simplest” fields and CM fields; and “generic” fields).
It suggests that for these fields, this is essentially the best we can do, i.e. there are no
explicit (efficient) formulas for the class group of most CM fields and “simplest” fields, and
likewise no explicit formulas for the unit group of most “generic” fields.

The author thanks Thomas Espitau and Antoine Joux for interesting discussions on this
subject.
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COUNTING POINTS ON HYPERELLIPTIC CURVES OF TYPE
y? = 229 4zt 4 bat

S. A. Novoselov

In this work, we investigate hyperelliptic curves of type C : y? = 229+ + az9t! + bx
over the finite field Fy, ¢ = p", p > 2. For the case of g =3 or 4, pt4g and b is a
4g-root, we provide efficient methods to compute the number of points in the Jacobian
of the curve.

Keywords: hyperelliptic curves, Cartier — Manin matriz, Legendre polynomials, point
counting.

Let F, be a finite field, ¢ = p", p > 2. Hyperelliptic curves with equation
C:y*=2%" +azd™ + b

were investigated in [1-3]. For genus 2 case it is known [4] that Jacobian of such curves
splits into product of certain elliptic curves over some extension of the base field. There are
explicit formulae [5] expressing number of points in the Jacobian of curve in terms of traces
of Frobenius of elliptic curves.

In this work, we generalize this approach to genus 3, 4 case combining it with computing
Cartier — Manin matrices where it’s possible. Using the method of Paulhus [6, 7] we can
obtain decompositions of the Jacobian over the extensions of the ground field. The Cartier —
Manin matrix of the curve allows us to find the number of points on the curve modulo p.

!The reported study was funded by RFBR according to the research project no. 18-31-00244.





