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COUNTING POINTS ON HYPERELLIPTIC CURVES OF TYPE
y2 = x2g+1 + axg+1 + bx1

S.A. Novoselov

In this work, we investigate hyperelliptic curves of type C : y2 = x2g+1 + axg+1 + bx
over the finite field Fq, q = pn, p > 2. For the case of g = 3 or 4, p - 4g and b is a
4g-root, we provide efficient methods to compute the number of points in the Jacobian
of the curve.
Keywords: hyperelliptic curves, Cartier — Manin matrix, Legendre polynomials, point
counting.

Let Fq be a finite field, q = pn, p > 2. Hyperelliptic curves with equation

C : y2 = x2g+1 + axg+1 + bx

were investigated in [1 – 3]. For genus 2 case it is known [4] that Jacobian of such curves
splits into product of certain elliptic curves over some extension of the base field. There are
explicit formulae [5] expressing number of points in the Jacobian of curve in terms of traces
of Frobenius of elliptic curves.

In this work, we generalize this approach to genus 3, 4 case combining it with computing
Cartier — Manin matrices where it’s possible. Using the method of Paulhus [6, 7] we can
obtain decompositions of the Jacobian over the extensions of the ground field. The Cartier —
Manin matrix of the curve allows us to find the number of points on the curve modulo p.

1The reported study was funded by RFBR according to the research project no. 18-31-00244.
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But in general it’s only computable for finite fields of small characteristic. In the work [2]
the curve C is transformed to the curve

C ′ : y2 = x2g+1 − 2ρxg+1 + x

defined over F[
√
b] via isomorphism defined over Fq[ 4g

√
b], and it is proved that the elements

of the Cartier — Manin matrix of this curve can be expressed in terms of Legendre
polynomials. But an efficient method to compute Legendre polynomials was not provided.
In this work, we show how to compute these polynomials for the case g = 3 and big
characteristic. Partial results for the case g > 3 are also provided.

1. Computing Cartier — Manin matrix of the curve C ′

It is known that the number of points on certain elliptic curves can be expressed through
Legendre polynomials. Thus some instances of the polynomials from [2, Table 1, 2] can be
computed for finite fields of big characteristic using the Schoof — Elkies — Atkin [8, § 17.2.2]
algorithm. We collect such cases in the following theorem.

Theorem 1 [9 – 11]. Let c ∈ Fp, p > 3. Then

1) P p−1
2

(c) ≡
(
−6

p

)
t2 (mod p), where t2 is a trace of Frobenius of the elliptic curve

E2 : y2 = x3 − 3(c2 + 3)x+ 2c(c2 − 9);

2) Pb3/pc(c) ≡
(p

3

)
t3 (mod p), where t3 is a trace of Frobenius of the elliptic curve

E3 : y2 = x3 + 3(4c− 5)x+ 2(2c2 − 14c+ 11);

3) Pbp/4c(c) ≡
(

6

p

)
t4 (mod p), where t4 is a trace of Frobenius of the elliptic curve

E4 : y2 = x3 − 3
2
(3c+ 5)x+ 9c+ 7;

4) Pbp/6c(c) ≡
(

3

p

)
t6 (mod p), where p > 5 and t6 is a trace of Frobenius of the elliptic

curve E6 : y2 = x3 − 3x+ 2c.

Using this theorem we can compute Cartier — Manin matrix of curve C ′ of genus 3
completely. For the case of g > 3 we get partial information. For example, the polynomial
P p−1

2
appears in the formulae for g = 5, 7 in [2, Table 1, 2].

2. Decomposition of the Jacobian of the curve C ′ over finite field
In the work [6] there are decompositions for the curve C ′ over algebraically closed field.

But the method works over any field as long as we know the group of automorphisms
or its subgroups. So we need to obtain information about subgroups of this group over
finite field. Denote by AutC(Fq) an automorphism group of curve over the finite field Fq,
Cm a cyclic group of order m and by Dm a dihedral group of order m. Let also ζm be a
primitive m-root of unity. Every hyperelliptic curve has hyperelliptic involution ω. Some
other automorphisms of the curve C ′ are collected in the following theorem.

Theorem 2. Let C ′ : y2 = x2g+1 + cxg+1 + x be a genus g hyperelliptic curve defined
over the finite field Fq, q = pn.

1) AutC′(Fq) contains a non-hyperelliptic involution s : (x, y) 7→
(

1

x
,
y

xg+1

)
and

subgroup C2 × C2.
2) If p - 2g and 2g|(q − 1) then AutC′(Fq) contains an automorphism r : (x, y) 7→
7→ (ζgx, ζ2gy) of order 2g and subgroup D4g.
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Decompositions for the Jacobian of the curve C ′ follows from Theorem 2 and [7, Th. 4]:
— (genus 3) JC′ ∼ E × JD if C2 ×C2 ⊆ AutFq(C ′) and JC′ ∼ E2

1 ×E2 if D12 ⊆ AutFq(C ′);
— (genus 4) JC′ ∼ JD1 × JD2 if C2 × C2 ⊆ AutFq(C ′) and JC′ ∼ J2

D if D16 ⊆ AutFq(C ′)
Note that C2 × C2 ⊆ AutFq(C ′) holds in any field, thus we always have corresponding

decomposition. ButD4g ⊆ AutC′ holds in the field Fq[ζ2g], so we should work in an extension
of Fq of degree up to 2g to get decomposition. The degree of this extension is the smallest
integer k such that 2g|(qk − 1).

3. Genus 3
If we apply Theorem 2 to the genus 3 case, we obtain following result.
Theorem 3. Let C ′ : y2 = x7 + cx4 + x be a genus 3 hyperelliptic curve defined over

the finite field Fq, q = pn, p > 3. Then
1) JC′ ∼ E × JD over Fq for some genus 2 curve D and elliptic curve E;
2) JC′ ∼ E2

1 ×E2 over Fq if q ≡ 1 (mod 6) and over Fq2 if q ≡ −1 (mod 6). E1, E2 are
elliptic curves E1 : y2 = x3 − 3x+ c and E2 : y2 = x3 + cx2 + x;

3) if q ≡ 1 (mod 6), then #JC′(Fq) = (1 − t1 + q)2(1 − t2 + q), where t1, t2 are traces
of Frobenius of E1, E2 over Fq;

4) if q ≡ −1 (mod 6), then #JC′(Fq2) = (1 − t1,2 + q2)2(1 − t2,2 + q2), where t1,2, t2,2
are traces of Frobenius of the curves E1, E2 over Fq2 . The Frobenius polynomial of
the curve C ′ over Fq has a form

χC′,q(T ) = (T 2 − tT + q)(T 4 − b1T
3 + (a1,2 + t2 + b1t+ b2

1 − q)T 2 − qb1T + q2),

where a1,2 = −(2t1,2 + t2,2), t ∈ Z, |t| 6 2
√
q, b1 ∈ Z, |b1| 6 4

√
q.

The traces t1, t2, t1,2, t2,2 can be efficiently computed using SEA-algorithm. By using
results from Section 1 to compute polynomials from [2, Table 1, 2] we can efficiently compute
χC′(T ) (mod p) and therefore determine b1, t. So, theorem 3 provides an efficient method
to compute the number of points in the Jacobian of the curve C ′.

Since the curve C is isomorphic to C ′ over Fq[ 12
√
b], theorem 3 also allows us to compute

the number of points on C in the case 12
√
b ∈ Fq.

4. Genus 4
Applying Theorem 2 and [7, Th.4] to the curve C ′ of genus 4 we obtain following result.
Theorem 4. Let C ′ : y2 = x9 + cx5 + x be a genus 4 hyperelliptic curve defined over

the finite field Fq, q = pn, p > 2 and 8|(q − 1). Then JC′ ∼ J2
D, where D is a genus 2 curve

with equation y2 = (x4 − 4x2 + 2 + c)(x+ 2).

Since the model of the curve D is known, we can use algorithm [12] to compute number
of points in the Jacobian of the curve D and therefore in JC′ . This also allows us to compute
the number of points on genus 4 hyperelliptic curve C in the case 16

√
b ∈ Fq.

Note that this algorithm has complexity O(log7 p) and less efficient than SEA algorithm
with complexity Õ(log4 p), but still more efficient then general algorithms for genus 3 curves.
Also, in this case we can’t use results from Section 1, because we don’t know how to
efficiently compute Legendre polynomial Pbp/8c.
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