УДК 519.7

DOI 10.17223/2226308X/11/44

КОМПАКТНАЯ РЕАЛИЗАЦИЯ ФУНКЦИИ ОБРАЩЕНИЯ ЭЛЕМЕНТА В КОНЕЧНОМ ПОЛЕ $\mathbb{F}_{2^{16}}$

И. Е. Кокошинский

Предложено расширение известного метода поиска компактной реализации функции обращения элемента в конечном поле \mathbb{F}_{2^8} на случай поля $\mathbb{F}_{2^{16}}$. Получена верхняя оценка на размер схемы, выполняющей взятие обратного элемента в поле $\mathbb{F}_{2^{16}}$, и доказана теорема о том, что существует реализация функции обращения элемента в поле $\mathbb{F}_{2^{16}}$, использующая для вычисления не больше 336 XOR и 189 AND, или 777 GE.

Ключевые слова: блочный шифр, поле Галуа, функция обращения элемента в поле Галуа, легковесная криптография, gate equivalent (GE).

Легковесная криптография занимается вопросами компактной реализации шифров и их компонент, в частности S-блоков, главных нелинейных преобразований блочного шифра. S-блок — это, как правило, взаимно однозначная векторная булева функция, которую можно задать как функцию над конечным полем порядка 2^n . Одной из самых простых, но тем не менее криптографически хороших функций для использования в качестве S-блока является функция обращения элемента в поле Галуа. Такая функция является, например, основой S-блока криптосистемы AES.

В [1, 2] предлагается компактная реализация функции обращения над полем \mathbb{F}_{2^8} , опирающаяся на идею Винсента Рэймена [3] представления элемента поля как линейного многочлена над полем меньшей размерности и метод Акиры Сато [4], позволяющий ещё более компактно реализовать такую функцию. В данной работе рассматривается расширение данной реализации на поле большей размерности и даётся оценка на размер схемы, выполняющей взятие обратного элемента в поле $\mathbb{F}_{2^{16}}$.

Обращение элементов в поле \mathbb{F}_{2^n} напрямую, как многочленов степени n-1 по модулю многочлена степени n,- непростая задача. Но, как показано в [3], обратить элемент как многочлен первой степени по модулю многочлена второй степени сравнительно легко. Для этого представим элемент $g \in \mathbb{F}_{2^n}$ как линейный многочлен от некоторой формальной переменной y над $\mathbb{F}_{2^{n-1}}$:

$$g = \gamma_1 y + \gamma_0, \ \gamma_0, \gamma_1 \in \mathbb{F}_{2^{n-1}},$$

с умножением по модулю неприводимого многочлена $r(y)=y^2+\tau y+\nu,\, \tau,\nu\in\mathbb{F}_{2^{n-1}}.$ После перехода к нормальному базису $[Y^{2^{n-1}},Y]$ поля $\mathbb{F}_{2^n}/\mathbb{F}_{2^{n-1}},$ где $Y,Y^{2^{n-1}}-$ корни $r(y)=y^2+\tau y+\nu=(y+Y)(y+Y^{2^{n-1}}),$ получим

$$g = \gamma_1 Y^{2^{n-1}} + \gamma_0 Y.$$

Тогда $\tau = Y^{2^{n-1}} + Y = \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^{n-1}}}(Y) - \operatorname{след}$, а $\nu = Y^{2^{n-1}}Y = \operatorname{N}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^{n-1}}}(Y) - \operatorname{нор-ма} Y$. Выразив аналогичным образом элементы поля $\mathbb{F}_{2^{16}}$ через многочлены над \mathbb{F}_{2^8} , а элементы этого поля — через многочлены над \mathbb{F}_{2^4} и так далее, можно значительно упростить вычисления и находить обратный элемент в поле $\mathbb{F}_{2^{16}}$ следующим способом.

Утверждение 1. Пусть $x=x_1K^{256}+x_0K$, где $x_0,x_1\in\mathbb{F}_{2^{16}}$; $[K^{256},K]$ — нормальный базис поля $\mathbb{F}_{2^{16}}/\mathbb{F}_{2^8}$; $t=K^{256}+K$ — след K; $n=K^{256}K$ — норма K. Тогда обратный элемент равен $y=x^{-1}=y_1K^{256}+y_0K$, где

$$y_1 = [x_1x_0t^2 + (x_1^2 + x_0^2)n]^{-1}x_0,$$

$$y_0 = [x_1x_0t^2 + (x_1^2 + x_0^2)n]^{-1}x_1.$$

Можно сделать вычисления ещё более компактными, оптимизируя их схему. Во-первых, можно найти такие неприводимые многочлены, след которых равен единице. Это немного сократит сложность вычислений, поэтому будем считать, что всюду далее след равен единице. Во-вторых, Сато Акира [4] предлагает реорганизовать вычисления так, что возможно вынести часто встречающиеся выражения в отдельные переменные. Здесь и далее ⊕ и ⊗ обозначают сложение и умножение в поле.

Утверждение 2. Пусть $x \in \mathbb{F}_{2^{16}}, \ x = x_1 K^{256} + x_0 K, \ x_1, x_0 \in \mathbb{F}_{2^8}, \ [K^{256}, K]$ — нормальный базис поля $\mathbb{F}_{2^{16}}/\mathbb{F}_{2^8}; \ n = K^{256}K$ — норма K. Тогда x^{-1} можно найти следующим образом:

$$\Psi = [n \otimes (x_1 \oplus x_0)^2 \oplus (x_1 \otimes x_0)]^{-1},$$

$$x^{-1} = [\Psi \otimes x_0]K^{256} + [\Psi \otimes x_1]K.$$

Можно заметить, что часто мы умножаем не два произвольных элемента поля, а некоторый элемент поля на известную константу. Если использовать для этой операции собственную схему и наложить некоторые ограничения на выбор констант, возможна ещё более компактная реализация функции обращения элемента в поле Галуа.

В результате получены оценки сложности вычислений для функции обращения элемента в поле $\mathbb{F}_{2^{16}}$ и всех её составляющих.

Теорема 1. Существует реализация функции обращения элемента в поле $\mathbb{F}_{2^{16}}$, использующая для вычисления не больше 336 XOR и 189 AND, или 777 GE.

ЛИТЕРАТУРА

- 1. Canright D. A Very Compact Rijndael S-box. Naval Postgraduate School Technical Report: NPS-MA-05-001, 2004.
- 2. Canright D. A very compact S-box for AES // LNCS. 2005. V. 3659. P. 440–455.
- 3. Rijmen V. Efficient Implementation of the Rijndael S-box. Katholieke Universiteit Leuven, Dept. ESAT, Belgium, 2001.
- 4. Satoh A., Morioka S., Takano K., and Munetoh S. A compact Rijndael hardware architecture with S-box optimization // ASIACRYPT 2001. LNCS. 2001. V. 2248. P. 239–254.