2013 Математика и механика № 4(24)

УДК 512.541

А.В. Царев

T-КОЛЬЦА И ФАКТОРНО ДЕЛИМЫЕ ГРУППЫ РАНГА 1^1

Показано, что классы факторно делимых групп ранга 1 и бесконечных T-колец совпадают.

Ключевые слова: Е-кольцо, Т-кольцо, факторно делимая группа.

В теории абелевых групп без кручения важную роль играют так называемые E-кольца (ассоциативные кольца с единицей, канонически изоморфные кольцам эндоморфизмов своих аддитивных групп). В 1977 году Р. Боушел и Ф. Шульц рассмотрели и описали E-кольца специального вида, которые они назвали T-кольцами. При изучении самомалых групп конечного ранга А.А. Фомин и У. Уиклесс в 1998 году обобщили понятие факторно делимой группы на класс смешанных групп. Полное описание факторно делимых групп ранга 1 было получено О.И. Давыдовой в 2007 году. Замечено, что класс бесконечных T-колец и класс факторно делимых групп ранга 1 совпадают. Доказательству данного факта и посвящена данная заметка.

Под «группой» в работе подразумевается абелева группа, записанная аддитивно, под «кольцом» – ассоциативное кольцо (не обязательно с единицей); \mathbf{Z} , \mathbf{Q} и \mathbf{J}_n - обозначения колец целых, рациональных и целых р-адических чисел соответственно или их аддитивных групп, \mathbf{Z}_m – кольцо классов вычетов по модулю m, P – множество всех простых чисел, N – множество натуральных чисел. Если S – подмножество K-модуля M, то через $\langle S \rangle$ и $\langle S \rangle_K$ будем обозначать соответственно подгруппу и подмодуль, порожденные множеством S, а через $\langle S \rangle_*$ – сервантную оболочку множества S, состоящую из всех таких $r \in M$, что $nr \in \langle S \rangle$ при некотором натуральном n. Заметим, что $\langle S \rangle_*$ содержит все элементы из M, имеющие конечные порядки. Элементы $a_1, a_2, ..., a_n$ группы A будем называть линейно независимыми (над **Z**), если равенство $m_1a_1 + m_2a_2 + ... + m_na_n = 0$ влечет $m_1 = m_2 = ... = m_n = 0$. Бесконечное множество называется линейно независимым, если линейно независимо любое его конечное подмножество. Рангом группы A называется мощность максимального линейно независимого подмножества в A (обозначается r(A)). pрангом группы A называется размерность \mathbf{Z}_p -пространства A/pA (обозначается $r_p(A)$). Рангом (p-рангом) кольца или модуля будем называть ранг (p-ранг) его аддитивной группы. Через t(A) и $t_n(A)$ будем обозначать соответственно периодическую и p-примарную часть группы A. Кольцо и группу эндоморфизмов группы Aбудем обозначать E(A) и End A соответственно. Если K – кольцо, то через K^+ будем обозначать его аддитивную группу. Групповая терминология, применяемая к кольцам, относится к их аддитивным группам.

Другие используемые в работе понятия и обозначения можно найти в [1].

 Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы. Государственный контракт №14.В37.21.0363.

1. Е-кольца и Т-кольца

Определение 1.1. Кольцо K называется E-кольцом, если $\operatorname{End} K^+ = \operatorname{End}_K K^+$. Аддитивные группы E-колец называются E-группами.

Рассмотрим некоторые свойства Е-колец:

а) K является E-кольцом тогда и только тогда, когда всякий эндоморфизм φ аддитивной группы кольца K совпадает c умножением справа кольца K на элемент $\varphi(1)$.

Действительно, если K - E-кольцо и $\varphi \in \text{End } K^+$, то $\varphi(r) = \varphi(r \cdot 1) = r\varphi(1)$. Обратно, если $\varphi(r) = r\varphi(1)$, то $\varphi(rs) = (rs)\varphi(1) = r(s\varphi(1)) = r\varphi(s)$.

б) Е-кольцо К-коммутативно.

Пусть $x \in K$ и L_x — эндоморфизм левого умножения на x ($L_x(y) = xy$), а R_x — эндоморфизм правого умножения на x ($R_x(y) = yx$). Из п. а) следует, что $L_x = R_{L_x(1)} = R_x$. Это влечет $xy = L_x(y) = R_x(y) = yx$.

Предложение 1.1 [2]. Следующие утверждения равносильны:

- 1. *K E*-кольцо;
- 2. $Ec\pi u \varphi \in E(K^+) u \varphi(1) = 0, mo \varphi = 0;$
- 3. Кольцо $E(K^+)$ коммутативно.
- Р. Боушел и Ф. Шульц в [3] ввели близкое к E-кольцам понятие T-кольца.

Определение 1.2. Кольцо K называется T-кольцом, если умножение $m: K \otimes K \to K$, где $m(a \otimes b) = ab$, является изоморфизмом.

Теорема 1.2 [3]. Следующие утверждения равносильны:

- 1. K T-кольцо;
- 2. Отображение $d: K \to K \otimes K$, действующее по закону $d(a) = 1 \otimes a$, является изоморфизмом, обратным к m;
 - 3. K E-кольцо и $K \otimes K = K \otimes_K K$;
 - 4. $a \otimes b = b \otimes a$ для любых $a,b \in K$.

Теорема 1.3 [3]. Следующие утверждения равносильны:

- 1. *K* − *T*-кольцо;
- 2. K/t(K) изоморфно подкольцу поля \mathbf{Q} , и если $t_p(K) \neq 0$, то $t_p(K)$ циклическая группа и K/t(K) делится на p.

Примерами T-колец служат подкольца (с единицей) поля \mathbf{Q} и кольца классов вычетов. Кольцо целых p-адических чисел \mathbf{J}_p является E-кольцом, но не является T-кольцом (так как $r(\mathbf{J}_p) > 1$).

Пусть K - T-кольцо, тогда, учитывая п. 2 теоремы 1.3 и изоморфизм

$$K/pK \cong [K/\bigoplus_{q\neq p} t_q(K)]/[pK/\bigoplus_{q\neq p} t_q(K)],$$

получаем, что $r_p(K) \le 1$ для любого простого p.

Лемма 1.4. Пусть A — редуцированная группа, все p-ранги которой конечны, тогда ее первая ульмовская подгруппа — нулевая.

52 *А.В. Царев*

Пусть $\chi=(m_p)$ — произвольная характеристика (т.е. последовательность целых неотрицательных чисел и символов ∞ , занумерованная простыми индексами). Рассмотрим кольцо $\mathbf{Z}_{\chi}=\prod_{p\in P}K_p$, где $K_p=\mathbf{Z}_pm_p$ — кольцо классов вычетов по модулю p^{mp} при $m_p<\infty$ и $K_p=\mathbf{J}_p$ — кольцо целых p-адических чисел при $m_p=\infty$.

Следствие 1.5. Всякое редуцированное T-кольцо плотно и сервантно вкладывается в некоторое кольцо \mathbf{Z}_{γ} .

Доказательство. Так как все p-ранги T-кольца K не превосходят 1, то его ${\bf Z}$ -адическое пополнение K^{\wedge} изоморфно некоторому кольцу ${\bf Z}_{\chi}$. Тогда, учитывая лемму 1.4, получаем, что кольцо K плотно и сервантно вкладывается в кольцо $K^{\wedge} \cong {\bf Z}_{\chi}$.

2. Факторно делимые группы ранга 1

При работе с аддитивными группами колец важную роль играют факторно делимые группы. В случае групп без кручения факторно делимые группы были введены Р. Бьюмонтом и Р. Пирсом [4] еще в 1961 году. Более общее определение (затрагивающее и смешанные группы) было дано А.А. Фоминым и У. Уиклессом в [5].

Определение 2.1. Группа A называется факторно делимой, если она не содержит периодических делимых подгрупп, но содержит такую свободную подгруппу F конечного ранга, что A/F — периодическая делимая группа.

Базисом факторно делимой группы A будем называть всякий базис свободной группы F.

Факторно делимым группам ранга 1 посвящена статья О.И. Давыдовой [6]. Рассмотрим некоторые основные результаты этой работы.

Определение 2.2. Для элемента a из группы A и простого числа p определим m_p как наименьшее целое неотрицательное число, такое, что элемент $p^{mp}a$ делится на любую степень p в группе A. Если такого числа не существует, полагаем $m_p = \infty$. Характеристика $(m_{p1}, m_{p2}, ..., m_{pn}, ...)$ называется кохарактеристикой элемента a в группе A и обозначается cochar(a).

Предложение 2.1 [6]. Если x — базисный элемент факторно делимой группы A ранга 1, то $cochar(x) \ge cochar(a)$ для любого $a \in A$. B частности, кохарактеристики двух различных базисных элементов в группе A совпадают.

Определение 2.3. *Кохарактеристикой* факторно делимой группы A ранга 1 называется кохарактеристика любого ее базисного элемента (обозначается cochar(A)).

Рассмотрим кольцо $\mathbf{Z}_{\chi} = \prod_{p \in P} K_p$. Если тип [χ] отличен от нулевого, то определим кольцо $R^{\chi} = \langle 1 \rangle_* \subset \mathbf{Z}_{\chi}$. Если [χ] = 0, то определим кольцо $R^{\chi} = \mathbf{Q} \oplus \mathbf{Z}_{\chi}$.

Теорема 2.2 [6]. Если A – факторно делимая группа ранга 1 кохарактеристики χ , то A изоморфна аддитивной группе кольца R^{χ} , а ее кольцо эндоморфизмов E(A) изоморфно кольцу R^{χ} .

Теорема 2.3. Всякое кольцо R^{χ} является T-кольцом. Любое бесконечное T-кольцо изоморфно некоторому кольцу R^{χ} .

Доказательство. Справедливость первого утверждения вытекает из теоремы 1.3 и построения колец R^{χ} .

Пусть K – произвольное бесконечное T-кольцо и пусть $K^{\wedge} \cong \mathbf{Z}_{\chi}$. Нетрудно видеть, что если K^+ не является редуцированной группой, то $K \cong \mathbf{Q} \oplus \mathbf{Z}_m = R^{\chi}$ (см, например, [2]). Поэтому далее будем считать, что K^+ – редуцированная группа, т.е. K – подкольцо кольца \mathbf{Z}_{χ} . Рассмотрим факторгруппу $K^+/\langle 1 \rangle$, которая в силу

теоремы 1.3 является периодической. Покажем, что $K^+/\langle 1 \rangle$ — делимая группа. Возьмем элемент $a=(\alpha_p)\in K^+$, где $\alpha_p\in K_p$. Для каждого простого числа $q\neq p$ элемент α_p делится на q. Если $0\leq m_p<\infty$, то $\alpha_p=a_0+a_1p+...+a_{mp-1}p^{m_p-1}$, и тогда $\alpha_p-a_01_p$ делится на p, где 1_p — единица кольца \mathbf{Z}_pm_p . Аналогично, если $m_p=\infty$, то $\alpha_p=a_0+a_1p+...+a_sp^s+...\in \mathbf{J}_p$ и тогда $\alpha_p-a_01_p$ делится на p, где 1_p — единица кольца \mathbf{J}_p . В обоих случаях получаем, что $a=pb+a_01$, причем, поскольку K^+ — плотная сервантная подгруппа в \mathbf{Z}_γ , то $b\in K$. Следовательно, $a+\langle 1 \rangle$ делится на любое простое число p в группе K^+ , то есть $K^+/\langle 1 \rangle$ — делимая группа.

Так как $K \subset \prod_{p \in P} K_p$, то K не содержит делимых периодических подгрупп. Следовательно, K^+ является факторно делимой группой ранга 1. Кроме того, очевидно, что $cochar(K^+) = cochar(1) = \chi$. Тогда из теоремы 2.2 вытекает, что $K \cong R^{\chi}$.

Отметим в заключение, что конечные T-кольца — это в точности кольца классов вычетов.

ЛИТЕРАТУРА

- 1. *Фукс Л*. Бесконечные абелевы группы. Т. 1, 2. М.: Мир, 1974, 1977.
- 2. Schultz P. The endomorphism ring of the additive group of a ring // J. Austral. Math. Soc. 1973. V. 15. P. 60–69.
- 3. Bowshell R.A., Schultz P. Unital rings whose additive endomorphisms commute // Math. Ann. 1977. V. 228. No. 3. P. 197–214.
- 4. Beaumont R., Pierce R. Torsion free rings // Ill. J. Math. 1961. V. 5. P. 61–98.
- 5. Fomin A.A., Wickless W. Quotient divisible abelian groups // Proc. Amer. Math. Soc. 1998. V. 126. P. 45–52.
- Давыдова О.И. Факторно делимые абелевы группы ранга 1 // Фунд. и прикл. матем. 2007. Т. 13. № 3. С. 25–33.

Статья поступила 14.05.2013 г.

Tsarev A.V. T-RINGS AND QUOTIENT DIVISIBLE GROUPS OF RANK 1. We prove that the class of quotient divisible groups of rank 1 coincides with the class of infinite T-rings.

Key words: *E*-ring, *T*-ring, quotient divisible group.

TSAREV Andrey Valer'evich (Moscow State Pedagogical University) E-mail: an-tsarev@yandex.ru