2013 Математика и механика № 1(21)

УДК 512.623.5

Г.Г. Пестов, Е.А. Фомина

КОНСТРУКЦИЯ СЕМЕЙСТВА БЕСКОНЕЧНО УЗКИХ ПОЛЕЙ

В статье изложена новая конструкция семейства бесконечно узких полей.

Ключевые слова: базис трансцендентности, двумерное упорядочивание, верхний конус, бесконечно узкое поле.

Исследования по теории линейно упорядоченных полей начались с пионерских работ Артина и Шрайера [1]. Бесконечно узкие поля относятся к тому классу полей, которые одновременно допускают и линейное, и двумерное упорядочивание. В работе [5] показано, что поле $\mathbf{Q}(\pi)$ можно снабдить двумерным порядком, при котором оно является бесконечно узким полем. В настоящей статье описан новый способ построения семейств бесконечно узких полей. Эти семейства существенно шире семейств, описанных в [6].

1. Основная конструкция

Пусть P_0 — линейно упорядоченное поле. Обозначим через \tilde{P}_0 топологическое замыкание поля P_0 . В топологическом замыкании линейно упорядоченного поля нет собственных фундаментальных сечений [4]. Как известно, линейный порядок с поля P_0 единственным образом продолжается на поле \tilde{P}_0 [4]. Пусть B есть базис трансцендентности [2] поля \tilde{P}_0 над полем P_0 , т.е. максимальная алгебраически независимая система элементов \tilde{P}_0 над P_0 . Поле E0 как подполе P_0 линейно упорядочено.

Зададим произвольное отображение d: $B \to K$. Таким образом, для каждого $x \in B$ задано значение $dx \in K$. Далее, каждому $x \in K$ сопоставим значение $dx \in K$ следующим образом. Если $x \in K$, то $x = f(a_1,...,a_n)$. Убедимся, что представление $x = f(a_1,...,a_n)$ единственно. В самом деле, пусть ещё $x = g(b_1,...,b_m)$, где $b_1,...,b_m \in B$ и $f \neq g$. Тогда

$$f(a_1,..., a_n) = g(b_1,..., b_m).$$

 $f(a_1,..., a_n) - g(b_1,..., b_m) = 0.$

Следовательно, элементы

$$(a_1,..,a_n,b_1,...,b_m)$$
 из B

связаны нетривиальным алгебраическим соотношением, что противоречит определению базиса трансцендентности. Итак, доказано, что представление $x = g(b_1,...,b_m)$ единственно.

Теперь полагаем

$$dx = df(a_1, ..., a_n),$$

$$df(a_1, ..., a_n) = \frac{\partial f}{\partial x_1} da_1 + ... + \frac{\partial f}{\partial x_n} da_n.$$

где

Значит,

Поскольку представление $x = g(b_1,..., b_m)$ единственно, то dx для каждого x также определено единственным образом. Заметим, что ранее [6] авторы в конструкции верхнего конуса бесконечно узкого поля полагали всюду $dx_i = 1$. Таким образом, описываемая здесь конструкция является существенным обобщением конструкции из [6].

2. Двумерный порядок в поле К

Зададим двумерный порядок в поле K. Известно, что двумерный порядок однозначно задаётся верхним конусом K^u [3]. Построим верхний конус следующим образом. Пусть $f(x_1,...,x_n)$ пробегает поле $P_0(x_1,...,x_n)$; кортеж $(a_1,...,a_n)$ пробегает множество кортежей элементов из B. Имеет место следующая

Теорема. Множество

$$K^{u} = \{ f(a_{1},...,a_{n}) | f(x_{1},...,x_{n}) \in P_{0}(x_{1},...,x_{n}), df(a_{1},...,a_{n}) \ge 0 \}$$

есть верхний конус некоторого двумерного порядка в поле K, при котором K является бесконечно узким полем.

Доказательство. Убедимся, что K^u есть верхний конус 2-порядка в поле K.

Проверим выполнение условий (a) – (d) критерия верхнего конуса [3]:

(a)
$$K^{u} + K^{u} = K^{u}$$
;

(b)
$$K^{u} \cup -K^{u} = K$$
;

(c)
$$(K^u \setminus \{0\})^{-1} = -K^u \setminus \{0\};$$

(d) если
$$x, z \in K^u, y \in K^u$$
; $zy^{-1}, yx^{-1} \in K^u$, то $zx^{-1} \in K^u$.

(a) Убедимся, что множество K^u замкнуто относительно сложения.

Пусть $f(a_1, ..., a_n), g(a_1, ..., a_n) \in K^u$. Тогда

$$\frac{\partial f}{\partial x_1}da_1+...+\frac{\partial f}{\partial x_n}da_n\geq 0 \ \ \text{и} \ \frac{\partial g}{\partial x_1}da_1+...+\frac{\partial g}{\partial x_n}da_n\geq 0 \ ,$$

где $f(a_1, ..., a_n), g(a_1, ..., a_n) \in K$.

Но тогда имеем

$$\begin{split} \frac{\partial f}{\partial x_1} da_1 + \ldots + \frac{\partial f}{\partial x_n} da_n + \frac{\partial g}{\partial x_1} da_1 + \ldots + \frac{\partial g}{\partial x_n} da_n &\geq 0 \\ \frac{\partial (f+g)}{\partial x_1} da_1 + \ldots + \frac{\partial (f+g)}{\partial x_n} da_n &\geq 0 \end{split}$$

или

Значит, $(f+g) \in K^u$.

(b) Условие: $K^u \cup (-K^u) = K$ выполнено.

Действительно, пусть $f(a_1, ..., a_n) \in K$. Возможны два случая.

Либо

$$df(a_1,...,a_n) \ge 0,$$

 $f(a_1,...,a_n) \in K^u$

и тогда

Либо

$$df(a_1,...,a_n)\leq 0,$$

и тогда

$$f(a_1, ..., a_n) \in -K^u$$
.

Доказательство пунктов (c) и (d) формально аналогично доказательству, приведённому в [6].

Таким образом, в поле $K = P_0(B)$ эффективно задан нетривиальный двумерный порядок.

Покажем, что K – бесконечно узкое поле [5].

Пусть $x=f(a_1,...,a_n)\in \overset{o}{K^u}$. Так как $x\in \overset{o}{K^u}$, то, по определению верхнего конуса $\overset{o}{K^u}$, имеем dx>0. Докажем, что

$$\forall n \ \forall r \in K_0 \ (r < x \Rightarrow (x - r)^n \in \overset{o}{K}^u \).$$

Заметим, что для того чтобы элемент $(x-r)^n$ принадлежал открытому верхнему конусу, необходимо и достаточно, чтобы

$$d((x-r)^n) > 0.$$

Пусть $r \in K_{0}$, $x \in K$, и r < x. Так как (x - r) > 0, то $(x - r)^{n-1} > 0$ в силу того, что $K = P_0(B)$ является линейно упорядоченным полем. Имеем

$$\forall n \in \mathbf{N} \ d((x-r)^n) = n(x-r)^{n-1} dx > 0.$$

Значит, $(x-r)^n \in K^u$, следовательно, $x = f(a_1, ..., a_n)$ – бесконечно близкий к базе K элемент, и поле K является бесконечно узким.

Теорема доказана.

ЛИТЕРАТУРА

- 1. *Artin E.* Algebraische Konstruction Reeller Körper / E. Artin, O. Schreier // Abh. Math. Sem. Hamb. Univ. 5. 1925. S. 85–99.
- 2. Бурбаки Н. Алгебра. Многочлены и поля. М.: Наука, 1965. 300 с.
- 3. *Пестов Г.Г.* Двумерно упорядоченные поля. Томск: Томский госуниверситет, 2003. 127 с.
- Пестов Г.Г. К теории сечений в упорядоченных полях // Сиб. матем. ж. 2001. Т. 42. № 6. С. 1350–1360.
- Пестов Г.Г. Конструкция бесконечно узкого двумерно упорядоченного поля / Г.Г. Пестов, Е.А. Фомина // Вестник Томского государственного университета. Математика и механика. 2007. № 1. С. 50–53.
- 6. Фомина Е.А. Об одном классе двумерно упорядоченных полей // Вестник Томского государственного университета. Математика и механика. 2008. №3(4). С. 32–34.

Статья поступила 22.11.2012 г.

Pestov G.G., Fomina E.A. A CONSTRUCTION OF A FAMILY OF INFINITELY NARROW FIELDS. A new construction of a family of infinitely narrow fields is presented.

Keywords: transcendence basis, 2-ordering, upper cone, infinitely narrow field.

PESTOV German Gavrilovich (Tomsk State University)

E-mail: gpestov@mail.ru

FOMINA Elena Anatolyevna (Tomsk State Pedagogic University)

E-mail: ef254@mail.ru