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MAXIMIZING COMPETITION IN A BIOLOGICALLY PLAUSIBLE
NEURAL NETWORK

The goal of this work is increasing competition among the neurons of a one layer
feed-forward neural network. The feed-forward weights from input to the cells are
learnt using a Hebbian based learning rule and the weights between the neurons
are learnt with an anti-Hebbian rule. A dynamic learning rate is introduced and it
is claimed that this rule improves the competition.
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In order to study the black box of the brain it is necessary to have a model simulat-
ing its functionality. The visual system, occupying a big part of the brain and a consid-
erable part of the brain involved in processing of facial images [1] are good candidates
for studying the brain. The receptive fields [2] in the visual cortex seems to be result of
long term unsupervised learning during the evolution of animals and human. This unsu-
pervised learning has some difficulties to be simulated; beginning with the primary vis-
ual cortex, the first problem encounters is that cells receiving the same input signals
from the retina and then Lateral Geniculate Nucleus (LGN) should learn different pat-
tern from this unique input. This is what is also called efficient coding in brain [3].
Meaning that brain learns and memorizes the information with the lowest redundancy
and with as less resources as possible. Having several cells doing exactly the same
function would be meaningless and waste of resources. This may remind one, of princi-
ple or independent component analysis in which we try to find functions or components
describing the data with low redundancy and at the same time reduce the dimensional-
ity. The goal of this work is enhancing competition among the neurons of a biologically
plausible neural network and learning maximum possible number of components from
the same input signal. The learning of features is based on the Hebb’s method [4] and
the main job in competition is done by lateral weights among the neurons of the output
layer of the neural network which are learnt with an anti-Hebbian [5] learning rule.

1. Learning rule

1.1. Long term potentiating and long term depression

In this paper we introduce an improvement in the learning rule originally used in [3]
which learns the Gabor like filters [6],[7] from natural images and was inspired from
[4],[8] and Covariance [2],[9] learning methods:
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thr; =mean(v;; j =1..n)(n: number of output cells),

thr, = mean(u ; i =1...m)(m : number of input cells) .
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Here the + means positive rectification, u;is the value of the i’th input (i’th pre-

synaptic cell’s activity), v; is the activity of the j’th output(i’th post-synaptic cell’s ac-

tivity), tis the time constant for learning (reverse of learning rate) and o is the weight
reduction rate which prevents the constant weight increase. Here W;;is the weight be-

tween the neuron i and j.

In the current work the learning process is divided in two parts: Long Term Potenti-
ating (LTP) and Long Term Depression (LTD) [10]. This way the periods when the
cells have meaningful activity based on an appropriate input signal and when the cells
are facing noise are separated. In the LTP part, usually the weights are increased and in
the LTD part are decreased. The basic structure for the learning rule can be defined as:

thr; = Tmax; ,

if v, > thr; then LTP; else LTD,

where Tmax; is the temporal maximum of the activity of the cell number i and thr; is

the threshold for switching between LTP and LTD. The mean activity is not subtracted
from the activity as here we are using the temporal maximum activity of the cell as the
threshold between LTP and LTD and the subtraction of the temporal maximum from the
activity will never result in a positive value and thus there would be no LTP. In contrast
the sliding maximum is used as the criteria for switching between LTP and LTD:

dle - 2
LTP: 1, — = =1 ~u)(v;) —a;(v;) wy ],

dwz’j » 2
LTD: ¢, dt = —u)(v;) = ouv;)" w;].
In order to prevent appearance of negative weights as a result of weight reduction
we push up the weights after each update (1)

w,

y = Wy +(—min(w,))" . (1)

1.2. Dynamic a

As was introduced in [8], ais used to prevent the weights from constant increase.
Based on an idea introduced by [11] a dynamic a was used which lets the weights to
freely increase when the neural activity is too low and decreases them when the activity
is too high. In other words, the a constrain is regulated by the neural activity and regu-
lates the weight changes. A faster increase in o prevents the networks from having too
fast weight increase in the cases a neuron faces a familiar input pattern or when the in-
put itself is strong (2)

Alphalnc = (v, — thresh)* —(=(v; — thresh)*)*, Q)

Alphalnc = Alphalnc* ,
oo,
ta—t’ = (Alphalnc — AlphaDec)

t=1000; ot =1; thresh=0.4.
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2. Activation and completion
2.1. Activation

The membrane potential is slowly following a nonlinear function (equation (3)) of
the input signals multiplied by the synaptic weights. At the same time the inhibition
(h;) from the other neurons is considered to decrease the neural activity in the case of

correlation with other neurons:

rpaaL;:((uSumi)—hi —v), 3)

m
T, =10, uSum; = szj“
J=1

j )
1
(1+exp(=3.5(uSum, —1)))

As negative neural activity is not allowed, the neuron’s output activity is actually the
half-rectification of the membrane potential:

if (uSum; >1) then uSum; = 0.5+

Vi = P; "
The inhibition from other neurons to each neuron is calculated by multiplying the
activities of the other neurons to the inhibitory weights and summing the result up:

gy

n
h = thi *Wa,v;
j=1

(dhe)) _

where T . 4
h ot pl ( )
1, = 100,
. Ohc;
if (mean; > 0.1) then 10000 a—t’ =0.7—mean;, %)

else 100000 % = mean, —0.1,

he; = he;”
where Wa;; is the lateral weight between the two neurons 7 and ; of the output layer.

The equations (4) and (5) take care of the strength of the inhibition not to get bigger
than the activity of the neuron itself. Without this, the activity of the neuron will be sup-
pressed, the dynamic a will not reduce the weights and as a result the weights will con-
stantly rise. As it will be mentioned later (6), the learning rate slows down when the
neural activity increases. This, together with the equations (4) and (5) give also stability
to the network.

2.2. Anti-Hebbian learning

The inhibitory weights are learnt using an anti-Hebbian learning rule, meaning that
the weights change the same way as in the Hebbian learning, but at the end, the activity
is calculated by considering the negative weights. Following is the update rule for the
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lateral anti-Hebbian connections between the neurons of the output layer:
oWay

=00 —v)—a, (v, —7) Way,

Th

y=0.3; a, =0.1.
Here y=0.3 guarantees that just the neurons with an activity higher that 0.3 are con-

sidered for competition. This prevents noise to effect the competition. vis the mean of
the activities of all neurons.

2.3. Temporal mean and standard deviation

The sliding characteristics of the network are used to automatically regulate its
function. The sliding standard deviation is simplified to the mean distance from the
mean activity. The sliding maximum is calculated by adding the sliding standard devia-
tion to the temporal mean. The mean itself is slowly following the neural activity by
time constantt, :

Omean;
"ot
asD(r,)
K

=v; —mean;,

=|v; —mean; | - SD(v;),
Tmax; = max(r;, mean; + SD(v,)) .

2.4. Dynamic time window for temporal mean
and standard deviation

An important role in completion among neurons is played by dynamically changing
the learning rates t;and T, and the time constant for following the temporal (sliding)
activities T, :

Tmax; = max(r;,mean; +SD(r;)),
1, = ((Tmax;)")*5000 + base , (6)
T, =1;-0.1,
1, = ((Tmax,)" Y +b,

b=2.

The learning time constant is a combination of a linear part; «base» and a strongly
non-linear part both rising by the increase in the temporal maximum of neural activities
which prevent fast growth in weights when the temporal maximum of the activity is
high. Two different «bases» are discussed in Results.

The fact that the learning rate is decreased when the neuron is off for long time,
gives the neurons the ability to learn their initial values directly from the input data. The
fast learning rate for the lateral (inhibitory) connections (7, = 1, x0.1) prevents neurons

to save similar patterns for a long time as the strong inhibition which is also guided by
hc; de-correlates the neurons in the very early stages of learning.
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3. Evaluation criteria

The performance of leaning was measured by various criteria. Two main goals were
a high sparseness on the output and a high discrimination ability between different
patches.

3.1. Sparseness

One of the characteristics of natural neural networks is their ability in effectively
coding information. That is, the combination of activation of just a few cells is used to
code amount of information. The fewer number of cells code the information, the more
efficiency the network has. That is, high sparseness of the active cells on the output can
be a criterion for the efficiency of the network. We have used the sparseness measure-

ment introduced by [12]:
n = v DY v
0= Jn -1 ’

where n is the number of dimensions. The idea here is that if a vector has a value just in
one of its components, the length of the vector and the value it has in the mentioned di-
mension are the same and their division is one. So in the case in a vector we have just
one value, S(7) is one, and in other cases this value is less than one as:

X4 y+..>x2 + 7+

3.2. Similarity

We considered the cosine of angle between norms of two vectors as a criterion for
similarity [3]. This value is one for parallel or similar vectors. The more two image
vectors are different; the similarity factor for them is more far from 1 and closer to zero.
For measuring the similarity, we divided the dot product of two vectors by the multipli-
cation of their lengths:

Similarity(A,B) = A.B/| A|| B|=cos(0) ,

A.B = A|| B|cos(0).

3.2.1. Similarity as a tool for counting learned patterns

This similarity was used as preliminary criteria for the efficiency of learning. The
weight vectors of the neurons were compared one by one and the ones with high simi-
larities were grouped together. The number of groups was considered as the number of
different patterns the network has learnt.

3.3. Independence

In order to measure the independence, we used «variance of the conditional distri-
butionsy» introduced in [3]. The idea was that if the variance of the output of one neuron
changes depending on the output of the other neuron, these two neurons are not inde-
pendent. We defined 9 ranges of activities beginning with the first range from 0 to 0.1
of the maximum neural activity and the 9" range between the 0.9 of the maximum ac-
tivity and the maximum activity. Then supposing the activity of one cell being in one of
the ranges, calculated the variance of the activity of another arbitrary neuron. If this
variance does not change (has the variance of zero) in all other ranges, then the two se-
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lected neurons are independent. We called the mean of the variances of variance of the
neural activities in different rages, «Dependency». The algorithm is as follows:

for each twov,and v, cell activities (¢ <k)

{
for i = 1 to Nranges
{
for j = 1 to Nranges
{
Ib; =i*range;
ub; = (i+1)* range;
ld; = j*range;
ud; = (j+1)* range;
record ; ; =number of cases where (Ib; >v. >=ub,)A(ld; > v, >=ud )
H
record ; = (record ;)/ max(record ;)
H
var ., = variance(variance( record ));
i

Dependence = mean( var );

Where Nranges is the number of ranges, /b and ub are the lower and upper bounds
for ranges.

4. Results

In this work the network has 100 cells each of which receiving 800 input signals.
The input signals are the values of the positive and negative parts of 20x20 patches of
the whitened face images reshaped to two 1x400 vectors in a row. Each input sample is
shown to the network for 100 times to have the dynamics of the network slowly
adapted. The following is the measured characteristics of the network after more than
1 000 000 cycles of learning.

Table 1
Network Characteristics
. Number
Algorithm Base of patterns Dependency | Sparseness
1 4000 + ((v—0.7)"/0.3)x 5000 97 2.5107° 0.70
2 2000 + ((v—0.7)" /0.3) x 10000 70 2.7.107"° 0.99

Here the preferred algorithm is the Algorithm 1. As it can be seen in the Table 1, the
highest number of patterns is achieved by the dynamic learning rate having a «base» with
a smaller linear part (Algorithm1). The high sparseness in the second case can be the re-
sult of strong lateral (inhibitory) connections which is not much satisfying. In Addition, a
very high sparseness, close to one, is not desired as in fact not much information is on the
output to be feed to the next layers of the neural hierarchy. The higher dependency in the
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algorithm 1 may come from the fact that the number of components is too high and they
can not be highly independent. But in both algorithms the dependency is satisfyingly
small. The constant 4000 in the algorithm 1 is more than in algorithm 2 in order to prevent
too fast learning. ((v—0.7)"/0.3) has the minimum value of 0 if the mean activity of the
cell is less than 0.7. That is, the linear part of the time constant is used just if the mean ac-
tivity is higher than 0.7. Else the time constant will have its default value (2000 or 4000).

An example of the receptive fields or weight matrices of the cells is represented on Fig. 1.
Here one can observe how the learnt components look like.
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Fig. 1. Visualization of the learnt components (receptive fields) of the neural net-
work. The images function of Matlab was used to visualize the weight matrices of
the output layer’s neurons

Conclusion

We observed that using different methods together could increase competition, re-
duce the dependence of the different cells and lead to learning different components.
The dynamic learning rate helped the competition by giving new and meaningful initial
values to the cells with low activities which with a high probability are the losers of the
competition with other cells. This way, if a cell is the looser and its firing rate (activity)
reduces, its learning rate increases and it learns the new inputs faster while the winners
of the previous completions are tuning their patterns with a low leaning rate and more
precise details. We observed (Table 1) that the lowest base we use for the learning time
constant the better competition we have. But this is limited as a too much low base
would lead to very fast increase in the weights. A high learning rate for the lateral
weights which inhibits the activity of the neurons could prevent the neurons from cor-
relation and learning the same patterns at very early stages of learning. A dynamic coef-
ficient for inhibition maximizes the inhibition to the maximum value which doesn’t kill
the neural activity. A strong inhibition reduces the activity of the neurons, preventing
the dynamic weight reduction factor o from increasing and leads to constant weight in-
crease which is not desired.
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TEeXHUYECKH yHHBepcuTeT), Xamkep @.X., (Texunueckuii yHuBepcuter Kemumu, ['epmanus).
MakcuMu3anus KOHKYPEeHIUH B 0M0JIOTHYeCKH NPAaBI0N0100H0ii HelipOHHOI ceTH.

KirodueBsle ciioBa: HEHpOHHBIE CETH, NpaBWIO oOydeHHs X300a, aHTHX>000BcKoe oOydeHwe,
npasmwio Oifs, KoBapHaHTHOE 00yUCHHE, KOHKYPEHIHL.

Lenpto naHHOW pabOTHI SBISETCS MAaKCHMU3ALHMs KOHKYPEHIUH Cpeir OHOJIOTHYECKH IpaB-
JIOTIOTOOHBIX HEHPOHOB ISl TIOJyYeHHs] MaKCHMAaJIbHOTO KOJIMYECTBA PELENTHBHBIX noneil. bruo-
JIOTHYECKH NPaBAONOA00Has HEeHpOHHAs ceTh B Hpolecce oOyueHHs IOJDKHA BBIyUMTb Pa3ivy-
HblE€ HE3aBHCHUMbIEe KOMIIOHEHTHI YHHUKaIbHOrO BXoAHoro curxana. Cers comepxut 100 BeIXon-
HBIX HEWPOHOB, KaXIBIH M3 KOTOPHIX moiy4yaeT Ha Bxox 800 3HavueHWH spKocTell MHUKcenen
(hparmenToB n300pakeHnii. Meton o0y4eHNsI HEHPOHHOW CETH OCHOBAH Ha mpasuie XeO06a. /s
pelreHns 3aa4 MaKCHMH3AIlMH KOHKYPEHIIMH IPHMEHSeTCsl aHTHXe000BCKast MOJIeNIb MOAN(H-
KaIli¥ CHHANTHYECKHX cBsizel. [loka3ana BaxkHast poJIb AUHAMHIECKON CKOPOCTH OOYy4eHHs, 3Ha-
YeHHe KOTOPOH BO3PACTAeT B CIIydae HU3KOIO MAaKCHMAJIbHOTO BBIXOJHOTO 3HAYEHHSI HEHPOHOB 1
YMEHBIIAeTCs] TIPH BHICOKOM MAKCHMaJbHOM BBIXOJHOM 3HAY€HHH HEHPOHOB. JTO MPHBOIUT K
MOBBIIICHNIO KOHKYPEHIIMH U CO3/IaHUIO OOJIBIIOr0 KOJMYECTBA Pa3IMUHbIX 00pa3oB, XapaKTepH-
3yEMBIX COOTBETCTBYIOIIMMU PEUECIITUBHBIMU ITOJISIMHU.



