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The article deals with the problem of portfolio investment in the Black-Scholes
model with several risky assets. The hedging strategy for Asian option is found
using the martingale method. The analytical properties (differentiability) of the
densities of exponential random variables are studied.
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Introduction

The world financial system is continuously developing, which causes its ever in-
creasing fragmentation. The derivatives market as one of the elements of the system de-
velops even more rapidly. The first derivatives were currency futures and forwards,
emerged in the early 70’s a little later there were options [1].

After the first option transaction, which took place in 1973 on the Chicago Board of
Options Exchange [2], a revolution in the development of option trading began. By the
end of the 1970’s options were well studied on stock exchange and then new exotic op-
tions appeared. In the late 1980’s and early 1990’s exotic options became more in de-
mand and their trade became more active in the over-the-counter market. Soon in the
commodity and currency markets Asian options are becoming popular.

Geman and Yor have considered Asian options in their work [3], such derivatives
are based on the average prices of underlying assets. Using the Bessel processes authors
found the value of the Asian option. Moreover, applying simple probabilistic methods
they obtained the following results about these options: calculated moments of all orders
of the arithmetic average of the geometric Brownian motion; obtained simple, closed
form expression of the Asian option price when the option is “in the money”.

The exact pricing of fixed-strike Asian options is a difficult task, since the distribu-
tion of the average arithmetic of asset prices is unknown when its prices are distributed
lognormally. The study of this problem is divided into three groups. A large number of
works are connected with the numerical approach. Kemna and Vorst were among the
first who solved the task [4]. In their work the pricing strategy includes Monte Carlo
simulation with elements of dispersion reduction and improves the pricing method.
Furthermore, the authors showed that the price of an option with an average value will
always be lower than of a standard European option. Carverhill and Clewlow [5] used a
fast Fourier transform to calculate the density of the sum of random variables, as con-
volution of individual densities. Then the payoff function is numerically integrated
against the density. In this direction other authors continued to work, applying to the
calculations improved methods of numerical simulation [6—8]. Unfortunately, these
methods do not provide information on the hedging portfolio.
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The second approach, used by Ruttiens [9] and Vorst [10], is to change the geomet-
ric average price of the option. The third approach proposed by Levy [11] and accepted
by some practitioners, suggests that the distribution of the arithmetic average is well ap-
proximated at least in some markets by a lognormal distribution, and therefore the
problem is reduced to determining the necessary parameters. This problem is less com-
plicated since the first two moments of the arithmetic mean are relatively simple.

For a trader or an investor the main task is not only the saving but also the multipli-
cation of its capital. Many risks can be avoided with the help of one popular and very
effective technique — hedging. The option is hedged to protect its value from the risk of
price movement of the underlying asset in an unfavorable direction. To solve the hedg-
ing problem stochastic calculus methods are used which became a powerful tool used in
practice in the financial world. Stochastic calculus is a well-developed branch of mod-
ern mathematics with a “correct” approach to analyzing complex phenomena occurring
on world stock markets. Book of A.N. Shiryaev [12] provides a complete and systemic
view of ideas and techniques in stochastic finance. It should be noted that the task of
options pricing and the construction of a hedging strategy is well studied for American
and European options, for such derivatives there is a so-called delta strategy. But this
technique is not developed for Asian options.

In this paper we consider the financial portfolio with several risky assets. Based on
the results presented in the article [14] we have solved the hedging problem for the
Asian option using martingale methods. The main result of the paper is the formulas for
the hedging strategy y(¢)=(v,(¢),....y,(¢)) which are obtained with the help of the

martingale representation and Ito’s formula and is defined as

v, (t)=0, G(t.E(1).5(1)), i=1d &(1),S(t)e R, (1)

Z;j:lxi +Z:i=1yiﬁi (v) K
d

+

where G(t,x,y)=E )

In solving the problem we found the densities for the following random exponential
variables

ﬁ[(v)zj.(:exp{ciWi (u)—uciz/Z}du, v=1-t 3)

Also we proved that the function G(¢,x,y) is a unique solution of the elliptic dif-

ferential equation and has continuous derivatives with respect to all variables.

The article is structured as follows. In section 1 we define the model, construct the
strategy, find the densities for random variables (3). In section 2 we prove uniqueness of
the solution G(¢,x, y) . In section 3 we prove the theorem on the differentiability of the

function (2). In section 4 we formulate the auxiliary theorems.

1. Statement of the problem and main results

Consider a market consisting of d risky assets with the price process
S(t)=(S,(¢),....,S,(¢)) driven by the following system of SDEs

as;(t)=oc;S;,(t)dw;(t), i=1..d, 0<r<l], 4)
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where W = (W1 s Wy ) is a d -dimensional standard Brownian process with correlation

matrix R :(pw.) where p; =%, ; -

dxd ’
We assume that the riskless asset is a constant over time, i.€.
B(t)=1.
The payoff function f; is given by
1 1
=|— S (t)dt—K | , T=1.
/i {mlg,() l

Let(.
-/ =0{W(s),s<t} and denote by (Q,.,(-4),,<y-P) the corresponding probabil-

/o<y D€ the natural filtration generated by all random sources, i.e.

ity space which represents market fundamental elements.
Remark that the asset processes S, (¢), i =1,...,d , admit the following explicit form

S, ()= 5;(0)exp{c, ¥, (t)~to7 12}, i=1,..d.

The procedure for obtaining the strategy is the same as in the article [14]. To construct a
hedging strategy in the case of model (4) apply the representation Theorem 2 to the
following martingale

M()=E(f1.4).
To this end is we will find square integrable processes (o, (¢)),,,; adapted w.r.t. ./
such that for all # €[0,1]

M) =M (0)+ 3 [y (), ().

i=1l
Clearly that

d
dM () =2 o, ()W, (1). )
i=1
For coefficients o, (¢) we use the following formula
t
(M), = [ o (s)ds.
0
Therefore
d
a; (1) =—(M.W;),. (©)
dt
Also the portfolio value satisfies the equality
d d
dX (1) =21, (1)dS; (1) =2y, (£)5;S; ()W, (1). ™
i=1 i=1

Then equating the equalities (5) and (7) we obtain the strategy given by on the formulas

()= 20

i~
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()= M(0)+Zf0t (s)dW, (s)- Zv,(t)S(f)

i=1 g
where v, (¢) and(z) are the quantities of risky assets and riskless asset respectively. In
our case the martingale has the following form

M(t):EH IZS (v)dv— lm]. (8)

0 i=l1

If t <v <1 then we have

S,»(v)=S,»(t)exp{ci(M(v)—m(t))—%(v—t)}
We obtain
2.[Sl(v)dv 1js(v)ast(z)jexp{ (W, (v)- W(t))——(v—t)} v.

It means that we can represent the integral in the equality (8) as

—{ZSUd Z”§U+Z”,mmm

011

where
& (0= (v)dv
and
0 (1) Pw{ W@)WU»"—Wﬂ%W
Note that&; (¢) are measurable w.r.t. ./, and n,(¢) are independent on ./ . Hence
M (1)=G(1,5(2),5(1)) .
Here £(1) = (& (1),-+&4 (1)), (1) =(S,(2),-» S, (1)) , and
Zil X +Z:l:1 ym; (2) —K]

G(t,x,y):E( -

where x =(x,..,x;) and y=(y,...»,) . After some transformation we come to the

random variables
v G<2
ﬁi(v):.‘.exp{csiWi (u)—T’u}du, v=1-t
0

Since 7;(v) are independent random variables therefore the following proposition
holds
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Proposition 1. For all ¢ the random variables 7}, (v), i =L,...,d , have the following
distribution densities

®,1 (a;) i
() (62) = B ;
%;(V)( ’Zl) K[(f,a-(t’zi)), l ( )

Il
\‘P—‘
&

where

2
o, u

:Fi(t,ai(t,zi))=Jv‘exp{ci1§’i(u)+6iuai}du, B(u) W (u)- uW(l)——

K (1, (7)) = 15 g ()N (0,1),

The proof is carried out in the same way as in the article [14].
Represent martingale M (t) = G(¢,&(¢),S(¢)) by Ito’s formula. The existence of the

continuous derivatives of the function G(,x,y) is proved in section 3. In our case pro-
cesses &; () and S, (7) have the following stochastic differentials

d&; (1) =S, (),
ds; (1)=0,S;(t)dw;(t) .
By Theorem 4 we have

4G (1E(0).5(0) =
G 0E0.50) 36, 1505050+ 136, (2.5 0)o?s (0 |ars
56, (£ 508, (), 1)

Then M(t)=f,+M,,

where

=M (0)+ I G, (v.&(v), s<v)>+2G (nE(v),S(v))S; (v)+

d
+%ZG;’% (v,&(v),S(v))GfSi2 (v)}dv

and M, = iM, (1), M;(t) =[G, (&(¥),5(v)5;S; (v)dW, (v).

Since f, is continuous martingale with finite variation, then

J{ (nE(v),S (v))+ Z G, (v.(v).S(v))S; (v)+

i=l1

+5,Z:1: y (WE(), S(v))orS? (v)}dv=
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M), = (), = 301,00, = (11,08 =[G, (52(5).5 (1) 0,5, (v)

Hence, we obtain that
t

(M), =[G, (E(v),S(v))5;S; (v)dv.

So, remark that the function G(#,x,y) is a solution of the following equation

d 1 d .
G, (t,x,y)+ sz,» (t.x,y)y; +EZ Gl-zyl-sziyi (t,x,)=0,
i=1

i=l1

G(Lx,y)=(x-K),.

The equation (13) has the unique solution, see proof in the section 2. Then the coeffi-
cients in (6) are equal to

(13)

a,(t)= G'yi (1,&(2),8(2))5,S, (¢) -
Thus the option can be hedged by the strategy

Y =011 (£)s074 (1)),

with the components
v (t)=0, G(t,£(2),5(2)), i=1,...d.
2. Uniqueness of the solution G(#,x,y)

Definition 1. A [0,7)xRY xR? - R function G is called of uniform polynomial
growth if there exist some constants m >0 and L >0 such that

sup |G (2,x,p)| < L(1+|x|m +|y|m) :
0<i<T
Theorem 1. The equation

d d
1 "
G, (t,x,y)+ sz,- (t,x,y)y; +52 Gin’isz,-y,- (t,x,y)=0,
i=1

(15)
G(Lx,y)=0(x)
has a unique solution in the class of uniform polynomial growth functions.
Remark 1. The equation (15) is a particular form of the following equation
a(y) -
u, (t,x,9)+u, (t,x,)y+ 5ty (t,x,y)=0, (16)

u(lx,y)=0(x).
In the theory of elliptic equations in order to prove that (16) has a unique solution it
is necessary that the following condition holds

inf |a(y) > 0.
¥
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In our case this condition does not hold since a(y) = o’y* and inf 6%y =0 . We

obtain the degeneracy of the coefficient, thus u,, disappears and there is a singularity.

The theory of differential equations does not answer the question of the uniqueness of a
solution of such an equation. Therefore, for proving this fact we will use a probability
representation of the function G .

Proof. Without loss of generality we give the proof for d =1.We will prove by the
rule of contraries. Suppose that there exists another solution G(t,x, ») which satisfies
the equation (15) that is

2
~ ~ o ~
G, (t,x,y)+ G, (t,x,y)y +7y2ny (t,x,)=0,
G(Lx,y)=o(x).

We will prove uniqueness in the class of classical solutions. Represent G (u,,,,S, )
by Ito’s formula

dé( u’ u) |:G'u(u E-’u’ u)+G (u au’ u)S +_S G ( us u)i|du

+0S,G, (u.8,.8, )dW,.
And first of all we seek a solution in the class where the derivative w.r.t. y is bounded.
Next we apply the Ito formula on the interval ¢ <u <1

G(lagl’sl): G(t,{";t,St)

1 2
+I|:é;4(u$&u’Su)+é)'c(uﬂgu’Su)Su+ u }y(u &u’S )j|

1
+0[5,G, (1.8,,5,)anm,.
t
The second term is equal to zero by the assumption of the theorem. Since we suppose
1
that Gy is bounded then M, = J.Su(?y (u,€,,S,)dW, is square integrable martingale.
t

Hence
G(1,§,8,)=G(4,E,.S,)+oM, . a7

Next consider the conditional expectation which on the one hand is equal to
E(G(1E.S)IE =x.5, =y)=E(0(&)[& =x.5, = ).
On the other hand we have by (17) the equality

E(G(LE,8)IE =x.5, =)

1
=E(G(.E.5,)1& =x.5, =y)+E[cjsuGy(u,au,Su)qu & =x.5, =y}
t
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1
where E{GJ.SMG;/ (u,&,,S,)dW, |E, =x,S, = y] =0, because M, is a martingale.
t

Then we equate the right parts of both equalities
E(o(§)]E =x.8, =y)= E(G(t,ét,St) &, =x,8, = y) = G(t,x,y) )
Finally we obtain
G(1,%,y)=E(9(&)1& = x5, =)= G(t,x%y).
Now we will study the case when G, (z,x,y) is not bounded. Introduce the stopping
time

T, :inf{t <u< I:J‘luﬂfdsz n},
where 0, =S, Gy (u,¢,,S, ). Consider

G(t,8e, S, ) = G(1.E,8,)+[ " 0,4W, .
Since 0, is a continuous function, it is bounded and t, —1. In this case

EJ.:" 02du < n and hence E(J.:" 02dw, |. /7) =0. Then

E(G(t,.8, .S, )|.4)=G(t.x.y), Vnxl

Now we need to go to the limit. Suppose that function G(t,x, ») belongs to the
class of function of polynomial growth, that is

|Gt p)| S L{1+x"+y™),  Vm=1.
Therefore, we can write

G(t,x,y)= hmE( (tp-Ee .S, )1 4)-
One can prove that

E(z, )" < E(j; Sudu)m <E[ S7du= [ ES)du

Since &, is a monotone function then E sup | &, |" < +o0. Also we have
0<r<1

E sup S/" < SJ'E sup exp{cht —mczt/Z} < Eexp{c sup WI} < 400,

0<¢<1 0<t<l1 0<t<l1

The last inequality was proved in [14]. Then we obtain

|G T8 LS >|< sup |G(t @t,S)|<L(1+ sup &/ + sup Smj<L(l+E; + sup Stmj.

0<r<l 0<r<l 0<r<l
Denoting
~ . ~
v, =G(tn,érn,Stn) and y =|sup G(1,§,,S,
0<e<1

we get lw,|<w’, ¥n and By’ <+o.
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Next we apply Lebesgue’s theorem on majorized dominanted convergence to obtain
G(t,x,y)=limE(y, |& =x,S, = y) = E(um v, & =xS, = y) _
n—»0 n—0
= E((p(il) ‘ é;t = ant = y) = G(l,x,y).

The theorem has been proved.

3. Investigation of the function G(#,x,y) on differentiability

Earlier we used the fact that the function G(¢,x,y) is continuously differentiable

w.r.t. all variables to represent the martingale by the Ito formula. This result is presented
in the following theorem.

Theorem 2. Let x,y € R and i, (v) = J.exp{csiWi (u)—oiu/ 2}du . The function
0

27:1xi + Z:l:lyiﬁi (v) _K

G(t,x,y)=E
(t.x,5) y

.
has the continuous derivatives

d d o* —
—G(t,x,y), —G(t,x,y), —G(t,x,y), i=14d.
o (t.x,) o> (t.x,) P (t.x,)

i i i

0
—G 1,x, 5
5, 0 (6xy)

Proof. Represent function G(¢,x,y) as
d d d
G(t,x,y)= de (zi:1xi +Zi:1yizi —Kd)+1_[i:1 q; (t,z;)dz,..dz,,

d
. % > then

where ¢, (¢,z;) are densities defined in Proposition 1. Denote /(x)=Kd -
G(t,x,y)= ijf s yizpoito) (Zil Viz; —l(x))l—[ji1 q; (t,z;)dz,..dz,
o T ) ([ s (i~ 100 (12 ey,
= jRi'l H,{iqu’ (fazi)(J:O (Zil)’izi _l(x))‘ll (fazl)dzl)dzz---dzd )

(x,7,2)

{Kd —zid:] X —zl_d_zyizi] '

where a(x,y,z)=

N

+

By the Leibniz formula (18) we obtain
- d
Gx, (t,x,y)= J.Rii*] Hizz q;(t,2;)

o d
X(-[a(x,y,z)ql (t,z))dz; +q, (t,a(x, y, z))(yla(x, V.z)+ 21:1 Viz; —l(x)))dzz...dzd

- J.]R‘Fl J.;x,y,z)H;izqi (tazi )dzl"'dzd'
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Analogonsly we find derivatives w.r.t. y,
: d
G, (t,x,y)= -[R‘i“ Hi:Z q;(t,z;)

><(J. z,q, (1,2, ) dz, —f(a(x,y,z),x,y)a'yi (x, y,z))dzz...dzd.

a(x.y,2)
We use the function f(zl,x,y):(zl_d:lyizi —l(x))ql(t,zl) which is equal to zero

when z; =a(x,y,z). Hence

! d
G, (t3) = [ TT s (2 ([7, 2 (42) e ) .

Note that
d
I(x)=)> vz
' ——( ) z’zzy' ' when i=1,
a, (x,y,z)= e
-z, when i=2..d.
Then

" d ,
Gy, (t02) = [ T 0 (62 (ma (v 2)a (na(x3,2))a, (x,9,2))doy. ey,

Analyzing the obtained derivatives we conclude about its continuity.
Now we consider the partial derivative w.r.t. ¢ . Introduce the notation

H(x,y,z)= (Zil x; + 27:1 iz; _Kd)+ and  p(t,z)= Hil q; (t,z;).

Then G(t,x,y)= .[Rd H(x,y,2)p(t,z)dz,..dz,. By the definition of a derivative we can
write
G(t+8,x,y)-G(t,x,y)
3

= .[Rd H(x,y,2)5(t,2)dz,..dz, ,

where

(1) - 2L Ly 3 [0z (o ()

z¢j
Note, taking into account of Proposition 2 in [14], that
0
a—ql.(t,zi)ﬁb(zi) and  ¢;(t,z;)<b,.
t
Then

du

los (1. 2) =~
_.“HSZJ I[qul (u,z; )lJ‘ q; (u Zj )

—p(u,z)du

+3| 0
_J't ‘Ep(u,z)

du < +oo.
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Therefore, by Lebesgue’s theorem

0 .
EG(I,x,y) = J‘R‘i H(x,y,z)élsl_r)r(l)c_;s (t,2)dz,...dz,

d
0
:de H(x»y»Z)Zi=1 Hqi(t,zi) qu(t’zj)dzl'“dzd-
* i=1

i#]
The continuity of the derivative G, (z,x,y) follows from the smoothness of densities

g; (t,z;), which was proved in Proposition 2 of the article [14].

4. Appendix

4.1. Representation theorem
Theorem 3. If W, =(W,(¢),...,W,(t)) — n-dimensional Wiener process

and X =(x,4)cr is a  quadratic integrable martingale with

Sy =c{w: W (s),...W,(s),s <t} then
1t
X, :x0+Zjoai(s,m)dVK (s),
i=1

where o, (s,0)—./ adapted and ZI()TEaf (s,0)ds < +o0 .
i1

4.2. Ito’s formula. Multidimensional version

Let &=(&(1),-/4),., and S=(S(1), /)., are vector random processes
E(t)=(& (), (2)) and S(¢)=(S,(¢),...,S,;(¢)) which have the following sto-
chastic differentials

e, = a (t,0)dt + b (t,0)dW (1), i=1.d,

ds, =a" (t,w)dt+ b (t,0)dW P (1), i=1,

IS

Theorem 4. Let function f(t,x,,...,X;,¥,....,¥, ) is continuous and has derivatives
fitiifo, f:yx',f;‘y‘,fy".y‘ . Then with probability 1 the process f(#,&(¢),S(¢)) has
i i Mt M j iVj

the following stochastic differential
drf (1,8(1),8 (1)) =[ f; (6(1),8 (1))
S (E@,S () (L) + X (18,5 (1)) (1,0)
2T CEO SO o)) 4T T 7 (805 (0 Ja
L (E@).S (OB (10)am D () + X 1 (LEW.S (OB (Lo)aw™ (1),
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4.3 .Leibniz’s formula

Let a function f(x,z) and its partial derivative f,(x,z) be continuous on
[a,B]x[c,d] (asegment [o,B] contains a set of valuesa(x),b(x) and functions a(x)
and b(x) are differentiable on [c,d ). Then the integral

I(x)= j:((:))f(x,z)dz
is differentiable w.r.t. x on [c,d] and the following equality holds

1) =[10 2 f(x2)det £ (b (DD ()= f (xa(2)d (v (19)

Conclusions

In the paper, the hedging problem for the Asian option on a multidimensional finan-
cial market was considered. The main result is the hedging strategy for the Asian option.
For this we have obtained a differential equation of elliptic type have proved the
uniqueness of its solution. In addition, we have established that the obtained solution is
a continuous differentiable function. This property allows us to apply Ito's formula for
finding the coefficients in the martingale representation (5).
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