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The paper deals with the estimation problem of the actuarial present value of the continuous whole life annuity using
auxiliary information about the expectation of life. Nonparametric estimators of life annuity are constructed by indi-
viduals’ death moments. It is shown that the usage of such auxiliary information can often provide the mean squared
error (MSE) smaller than that of standard estimators. An adaptive estimator is also proposed. The asymptotic normality
of all these estimators is proved.
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The idea of life annuity in accordance with [1. P. 170] is this: from the moment t = 0 an individual once
a year begins to get a certain money, which we take as the unit of money, and payments are made only for the
lifetime of an individual. It is known that the calculation of the characteristics of life annuity is based on the
characteristics of the respective type of insurance. Thus, the average total cost of the present continuous annuity
is defined by the following formula (see [1. P. 184]):

JORE

where :&X is a net premium (the average of the present value of a single sum of money in the insurance lifetime
at the age x), 6 is a force of interest. Let x be an individual’s age on the moment of payments start,
X be his lifetime, T, = X —Xx be his future lifetime. Let us introduce the random variable
—oT,
1_ X
z(x):eT,TX >0. (1)

Then, by averaging the random variable z(x) (1), we get the formula of the whole life annuity
(see [2-4]):

2,(5) = E(z(x))=§[1—q’;(xx’f)j, @)

where E is the symbol of the mathematical expectation, S(x)=P(X > x) is a survival function,
D(x,8) =™ [e ' dF (1),
X

F(x)=P(X <x)=1-S5(x) is a distribution function.
1. Estimation of Annuity

Suppose we have a random sample X;...., X, of N individuals’ lifetimes. Now, separately estimate the
numerator and denominator in (2). The substitution of unknown function S(x) for its nonparametric estimator
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1N
Sy (¥) ==X I(X; >X),
N iz1
where 1(A) is the indicator of an event A, gives us the following estimators of the whole life annuity:
N 1 x o N 1, ®y(x38)
a ®)=—=1-—— X)X >X) [==| 1 ———= |, 3
2 o) 6( 50 N 2PN >0 =l 1-=0- ©)
ox N

(I)N(X,S)zeWZexp(—SXi)I(Xi > X).

i=1
2. Bias and MSE of ﬁXN )

In this section, we will obtain the principal term of the asymptotic MSE and the bias convergence rate
of the estimator (3). Now introduce the notation according to [5]: ty = (tyy.ton»--tey)" iS an s-dimensional

vector with components tin =tjn (x) =ty (X Xqpeees X ) j=1,_s, xeR*, R* is the a-dimensional Euclidean
space; H(t):R® —R" is a function, where t=t(x)=(t(x),...t;(x))" is an s-dimensional bounded vector

function; N (u, o) is the s-dimensional normally distributed random variable with a mean vector and covariance

_al(;l(z) , j=1s, = is the symbol of convergence in
7.

b=t

distribution (weak convergence); || x|| is the Euclidean norm of a vector x, R is the set of natural numbers.

matrix ¢ =o(X); VH(t)=(H,(),...Hs )", H;{t)=

Definition 1. The function H(t):R*—R" and the sequence {H(t,)} are said to belong to class
N, (t;y), provided that:
1) there exists an g-neighborhood
G={ZI| z, -t |<e,li =l,_s},
in which the function H(z) and all its partial derivatives up to order v are continuous and bounded;
2) for any values of variables X,...., X, the sequence {H(t,)} is dominated by a numerical sequence
C,d, suchthat d, T oo, as N — o0, and 0<y <oo,
Theorem 1 [5]. Let the conditions
1) H(2), {H(t)} e N, (),
2) Efty -] =0(dy ")
hold for all i € R. Then, for every k e R,
‘E[H (t)-H®O] —E[VH®) - ¢, 1]

zo(dN—(k+1)/2). (4)

Note, if in formula (4) k = 1, we obtain the principal term of the bias for H(t,), and at k = 2, we have
the principal term of the MSE.
Theorem 2. If S(X) >0 and S(t) is continuous at x, then

1) for the bias of (3), the following relation holds:
b@y' )] =|E@) 3)-a,@)|=0(N);
2) the MSE of (3) is given by the formula

_ _ _ D(X,28) — D% (x,8) / S(x) _
u? (@ (3) =E( (8)-a,(8))* = NTS200 +O(N?).
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Proof. For the estimator a," (8) (3) in the notation of Theorem 1, we have: s =2;
ty =t ton) ' = (@ (%8),Sy(0))'; dy =N; t=(t,t)" =(P(x,3),S(X)";

_ils :l _9(x9) —7 (S) :l _ Dy (%,9) _ =N /sy
H(t)_8£ tgj 8(1 S(X)j ax(a): H(tN) 8(1 SN(X)J a'x (8)5

T
1 CD(X,S)j .0

B T (1
VH () = (Hy (1), H, (1)) ‘( 85(x) " 382 (x)

The sequence {H(t,)} satisfies the condition 1) of Theorem 1 with C, =§ and y=0. Indeed,

e % exp(=8X)I(X; > X)
i=1

M2 DOl 1y DD )
) Sy (X) 5 Sy (%) 5 K %)
i-1
N
eSXe‘S"ZI(xi >X)
1 i=1 2
<=1+ _z
) N 5
2I(X; > X)
i=1

Further, the function H(t) satisfies the condition 1) in view of t, =S(x)>0, the condition 2) due to
Lemma 3.1 [6], provided that E{I'(X >x)}=S(x) <1, E{e®e ™I (X >x)}<e™e5(x)=S(x) <1 for
all ie®R.
We know that Sy (x) is an unbiased and consistent estimator of S(x). Show that ®,(x,d) is
an unbiased estimator of the functional ®(x,0):
eSX N
Edy (x,0)= N E{Z exp(—6X;)I(X; > x)}: d(X,9).
i=1
Now, calculate the variance of @ (x,9):
D®d, (x,8) =D ﬁ%(x. > x)e~% -ﬂi D{I(x. > x)e "% } —i(cp(x 28) - ®2(x,9))
N Nz N? ia ! N ' e
The ratio of two unbiased estimators can have a bias. Considering that all the conditions of Theorem 1
are fulfilled and E(ty —t) =0, in accordance with (4) we get the order of the bias of a, (5):

[E@ (8)-3,6)—-E[VHO(t, —)] =|E@E (3)-3,(3)]| =0(N ).

61101

Find the components of the covariance matrix o(a, (5)) =[ } for the statistics @y (X,0),Sy (X):

62107
Oy = ND{CDN (X,S)} =d(X,20) —CDZ(X,S); Gy = ND{SN (X)} =S(X)1-S(X)); 0y, =0y -
=Ncov(Sy (x), Dy (x,6)) =N (E {SN O (X,8)} —E{Sy ()} E{D (X,S)}) (1= S(X)D(X.5).
Using the previous results on the bias and the covariance matrix, we obtain

u?(a, ()= E[VH ()t _t)]z +O(N’3/2) :@JFO(NQM)’

C(@,(8)) = H2(t)oy, + H2 (1), + 2H, (DH, (t)oy, = 220 gf ((XX)’E’) /50

(5)

The proof is completed.
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3. Asymptotic Normality of &' (5)

To find the limit distribution of (3), we need the following two Theorems.
Theorem 3 (The usual central limit theorem) [7, Appendix 5]. If &,&,,...,Ey ... IS @ sequence of inde-

N
pendent and identically distributed s-dimensional vectors, E{¢,}=0, o(x)=E{&:&} ty :% > &, then,
k=1

as N — o0, Nty = N, (0,0(X)).
Theorem 4 (asymptotic normality of H(ty)) [2]. Let
1) VN -ty = Ne{o(x);
2) H(z) be differentiable at the point u, VH(u)#0.
Then

N(H(tm—H(u)):»Nl[ilH,-(umj, 3 H,-(mcijp(u)].
j=

p=1j=1
Theorem 5. Under the conditions of Theorem 2

“Nioy = D(x,28)-D?(x,8)/S(X)
INGE ) ax(s»:»Nl[o, S ]

Proof. In the notation of Theorem 3, we have s =2, o(x)=0o(a,(5)). Thus,
IN{(@y (%,8), Sy (X)) = (@(x,8), S (X))} = N, ((0,0),5(a,(3))).
The function H(z) is differentiable at the point t =(d(x,5),5(x)) and VH(t) # 0. Consequently, all the
conditions of Theorem 4 hold, and using (5), we have /N (&' (8) - &,(8)) = N, (0,C(a,(3))).
Theorem 5 is proved.

4. Construction of Estimators Using Expected Lifetime

Suppose we know the expected lifetime

EX =a. (6)
The estimator by making use of such information according to [8-17] can be taken in the following form:
a6 == 1- 20 5 g, ™
0 Sn (%)

N
where Y:%z X; is an estimator of a, parameter A we will find minimizing the principal term of the
i-1

asymptotic MSE of EXN (6,A) (7). The estimator (7) combines the available empirical information containing
in (3) and prior information (6).
For the estimator ﬁXN (6,A) in the notation of Theorem 1, we have: s =3,
ty = (s tonstan) ' = (@ (X8), Sy (0,0 dy =N; t=(t,1,)" =(P(%,8),5(x),a)";

_ b gy 222D A (s
H(t)_H(tl,tZ,tg)_8(l . Mg a)J 8{1 500 Ma a)} a, (9);

_1 _CDN(X:ES)_ 7_a)|—=aN .
H(tN)—B(l ) MX a)) a, (8,1);

1 o) xT;tO
8S(x) 8S2(x) &

VH () = (H, (), H, (8), Ha (1)) z(
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5. Bias and MSE of @ (5,).)

Arguing as in Section 1, it is easy to show that the sequence {H(t, )} satisfies the condition 1) of The-

2+[\(w+a)

orem 1 with C, = , ® <o is the limiting age, and y =0; also, the statistic t, satisfies the con-

dition 2) due to Lemma 3.1 [6], provided that EX' <®' <oo for all i e R. From here, for the bias of (7) we
obtain the following result:
[E@ (3.1 -3,(3) ~E[VH )ty —)] =[E@L (8,2)-&,(3)| = |p@' 3,1)|=O(N )
611012013
Now, find the covariance matrix o(a,(3,1)) =| 6,,6,,6,, | for statistics @y (x,5), Sy (X), X:
03103,033

o33 =ND{X} =D(X); o033 =03 =Ncov(X, Dy (x,8)) =C;(x,8) —ad(x,8);
O3 =03 = NCOV(Sy (%), X) =Co(X) ~aS(X). \ynere C,(x,5)= eSXTe-f’“udF(u), C,(X) = TudF(u), and o,,,

G,, Oy, Oy are defined in Section 1. Using (5), the above results for the bias and the covariance matrix
o(a,(3,1)), we obtain:

_ 2 _ C(a, (8,1)) _
uz(aXN (s,x)):E[VH(t)(tN -1)] +o(N 3’2)=T+O(N 3’2),
(@, (5.1) = %1 _ilH {06 H (1) = H2 ()03, + H2 ()03 + H2 ()05 + 2H, (OH, (D)0, +
p=LJ=
1264, _ QHiop3 2MH,005
52 S s
=C(8,(8)) +12Q ~22Q,, (8)

2923 Then the minimum of C(a, (3,))) with respect to  is achived at

+2H; ()H3(t)oy3 + 2H, (t)Hs (o, =C(a, () +

Hy0y5 + H
where Q, = % >0, Q,=—118"

Ao = & Such Ao minimizes the principal term of MSE uz(ﬁ)!“ (8,21)), and this minimum is as follows:
1

CEGBA)) 1 a oy &%) C((E6))
N - N (C((&X(S)) <—".

o ©)
6. Bias, MSE, and Asymptotic Normality of &, (5,4,)
In accordance with (9), the estimator
al (6,7»0):%(1—%—%0(%—@) (10)
will be called the optimal (in the mean square sense) estimator. The non-negative quantity Q—22 in (9) deter-

1
mines the decrease of the principal term of MSE for the optimal estimator by using auxiliary information (6).
Theorem 6. If S(x)>0 and S(t) is continuous at X, then
1) for the bias of (10), the following relation holds:

‘b(éx'\‘ (5,x0))‘ =o(N?);
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2) the MSE of (10) is given by the formula
2 (=N (=N = 2 _é(ﬁx(é,ko)) 32
U (3 (3,%0)) = E (&' (3,20) - (8)) _Tm(N ),
where C(a,(8,2,)) is defined by the formula (9).
Theorem 7. Under the conditions of Theorem 2
IN (3} (3,2:0) ~8,(8)) = Ny (0,C (a:(3,o)))

Proof. The statements of Theorems 6 and 7 follow from Theorems 1 and 4 with the usage of the argu-
ments of Sections 3-5.

7. Adaptive Estimator
The statistic &, (8,%,) can be used as an estimator for &, (8) if we know X,; otherwise, it is required
to construct an adaptive estimator. We need a more detailed formula for A :

1 D(X,0)
Ay = C,(x)—aS(x))—C,(x,0) +ad(x,0) |. 11
0 S(x)DX{ 500 (Co(x)—aS(x))—Cy(x,8) +ad( )} (11)
Using (11), we consider the following adaptive estimator:
~ - 1 Dy(X,0) ~ _
ay(Bhg)==|1-—N22 (X -a 12
¢ @do) =5 1-—g e - Ro(X-a) (12)
with
~ 1 Dy (%,0) /4 A
Ao = N C,(X)—aSy (X)) —C,(x,8) +ady (x,3) |, 13
0 SZSN(X){ SN(X)(Z() n 00) = C1(%,8) +ady ( )} (13)
N
where s? :ﬁZ(Xi —X)? is an unbiased estimator of the variance DX,
—lia

A -1 N 2 -1 N —0X
C,(xX)=N"2 X;I(X; >x), C,(x,8)=N">eX;I(X;>X).
i=1 i=1
Theorem 8. Under the conditions of Theorem 2,
IN (3 (8,20) ~3,(8)) = Ny (0,6 (3, (5, 10)))-
Proof. The following equality holds:
IN (3 (8.20) -2, (8)) =N (&} (5,10) ~&(3)) + Ry,
where Ry :6‘1(k0 —io)\/ﬁ(i—a). All the estimators, used in (13), converge almost surely to their true
values according to the strong law of large numbers (the Second Theorem of Kolmogorov [18]). Thus, from
the First Continuity Theorem of Borovkov [7], estimator io converges almost surely to A,. Based on the

central limit theorem \/ﬁ(i—a):Nl(O, DX), we retrieve Ry = 0. Now, the statement of Theorem 8 is
proved by making use of Theorem 7.

Conclusion

The paper deals with the problem of estimating the present values of the continuous whole life annuity
using auxiliary information about the expectation of life. It is shown that the usage of such auxiliary infor-
mation can often provide the MSE smaller than that of standard estimators. We proved the results on asymp-
totic properties of the proposed estimators: unbiasedness, consistency and normality. Also, the main parts of
the asymptotic MSEs of the estimators were found. An adaptive estimator is constructed; such estimator is
equivalent (in the sense of asymptotic distribution) to the estimator with the optimal weight coefficient A,.
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Note that the improved estimators of life annuities (3), (10) and (12) can be obtained by substituting of
empirical survival functions by the smooth empirical survival functions (cf. [19-32]).
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PaccmatpuBaercst mpobieMa OIICHUBAHUS aKTyapHOU HEMPEPHIBHON MOKU3HEHHON PEHTHI C UCIOJIB30BAHUEM JIOTIOJTHUTEILHON
“HPOPMAIIH O CPEAHEH MPOJODKUTEIFHOCTH KU3HH. [10 JaHHBIM MPOIOKUTEIFHOCTEH KU3HA WHANBUIYYMOB CTPOSITCS Hemapa-
METPHUUECKHE OIICHKHU MOKU3HEHHOU peHTHI. [10Ka3aHo, YTO HCIOIb30BaHNE JONOIHUTEIbHON HH(OPMALIUH TPUBOANT K CPETHEKBAI-
paTHYecKoil oIMOKe, MCHBIIICH, YeM y CTaHIAPTHOI OlleHKU. Takke mpeiaraeTes aganTHBHAs OleHKa. [loka3aHo, 4To ajaanTHBHAs
OIICHKA YKBUBAJICHTHA B CMBICJIC aCHMIITOTHYECKOTO paclpeeieHUs] ONTUMAIBHON OleHKe. Jloka3aHa aCHMITOTHYECKass HOpMalb-
HOCTb BCEX OIICHOK.

KirodgeBsle croBa: HemapameTpudecKas OLEHKA; MOXKM3HEHHAs PEHTa; MONOJHMTENbHas HH(opMamus; cpemHEeKBaapaTHIecKas
omnoOKa, aCHMITOTHYECKAst HOPMAIIBHOCTb.
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