Теоретические основы прикладной дискретной математики

№ 42

УДК 519.714.5

ОДИН ПОДХОД К ПОСТРОЕНИЮ КРАТНО ТРАНЗИТИВНОГО МНОЖЕСТВА БЛОЧНЫХ ПРЕОБРАЗОВАНИЙ

И.В. Чередник

Российский технологический университет (МИРЭА), г. Москва, Россия

Продолжается исследование множества преобразований $\{\Sigma^F: F \in \mathcal{Q}(\Omega)\}$, реализуемых сетью Σ с одной бинарной квазигрупповой операцией F. В случае произвольного $k \geqslant 2$ определяются условия k-транзитивности этого множества и предлагается эффективный способ проверки этих условий. Приводится алгоритм построения таких сетей Σ , у которых множество преобразований $\{\Sigma^F: F \in \mathcal{Q}(\Omega)\}$ является k-транзитивным.

Ключевые слова: сети, квазигруппы, блочные преобразования, k-транзитивное множество блочных преобразований.

DOI 10.17223/20710410/42/2

ONE APPROACH TO CONSTRUCTING A MULTIPLY TRANSITIVE CLASS OF BLOCK TRANSFORMATIONS

I. V. Cherednik

Russian Technological University (MIREA), Moscow, Russia

E-mail: p.n.v.k.s@mail.ru

In this work, we continue to study the cryptographic properties of block transformations of a new type, which can be used to construct hash functions and block ciphers. Let Ω be an arbitrary finite set, $\mathcal{Q}(\Omega)$ be the collection of all binary quasigroups defined on the set Ω , and $\Sigma^F : \Omega^n \to \Omega^n$ be a mapping that is implemented by a network Σ of width n with one binary operation $F \in \mathcal{Q}(\Omega)$. The network Σ is called *bijective* if the mapping Σ^F is bijective for each $F \in \mathcal{Q}(\Omega)$ and all finite sets Ω . The networks Σ_1, Σ_2 are called equivalent if the map Σ_1^F of Σ_1 coincides with the map Σ_2^F of Σ_2 for each $F \in \mathcal{Q}(\Omega)$ and for all finite sets Ω . It is not difficult to define the elementary networks by analogy with the elementary matrices and prove that every bijective network Σ is equivalent to a unique product of elementary networks. This product is called the canonical representation of Σ and its length is denoted by $\|\Sigma\|$. A bijective network Σ is called k-transitive for Ω if the family $\{\Sigma^F: F \in \mathcal{Q}(\Omega)\}$ is k-transitive. We prove that the bijective network Σ is k-transitive for all sufficiently large finite sets iff Σ is k-transitive for some finite set Ω such that $|\Omega| \ge k ||\Sigma|| + kn$. In addition, we propose an effective method for verifying the network's k-transitivity for all sufficiently large finite sets, namely, the bijective network Σ is k-transitive for Ω such that $|\Omega| \ge k \|\Sigma\| + kn$ whenever it is k-transitive for some (k+1)-element subset of Ω . Also, we describe an algorithm for constructing k-transitive networks. For a given bijective network Σ of a width n, the algorithm adds 6n-7 elementary networks to the canonical representation of Σ without changing the existing contents. As a result of these modifications, we obtain a bijective network $\widehat{\Sigma}$ that is k-transitive for every sufficiently large finite set Ω , namely for $|\Omega| \ge k \|\widehat{\Sigma}\| + kn$.

Keywords: network, quasigroup, block transformation, k-transitive class of block transformations.

Введение

В работе продолжается исследование множества преобразований $\{\Sigma^F : F \in \mathcal{Q}(\Omega)\}$, реализуемых сетью Σ с одной бинарной квазигрупповой операцией F, начатое в [1]. Напомним основные определения и необходимые результаты из [1].

Произвольная бинарная операция $F \colon \Omega \times \Omega \to \Omega$ называется квазигруппой на множестве Ω , если уравнения вида

$$F(x,b) = c, \quad F(a,y) = c$$

однозназначно разрешимы при любых $a, b, c \in \Omega$ [2]. Множество всех квазигрупп, заданных на множестве Ω , будем обозначать $\mathcal{Q}(\Omega)$.

Пусть $\{x_1,\ldots,x_n\}$ — множество переменных и * — символ бинарной операции. Множество всех формул в алфавите $\{x_1,\ldots,x_n,*\}$ будем обозначать \mathcal{W} . При сопоставлении символу * конкретной бинарной квазигруппы $F\in\mathcal{Q}(\Omega)$ формула $w(x_1,\ldots,x_n)$ реализует отображение $w^F\colon\Omega^n\to\Omega$, а набор формул $(w_1,\ldots,w_m)\in\mathcal{W}^m$ — отображение $(w_1^F,\ldots,w_m^F)\colon\Omega^n\to\Omega^m$.

Определение 1. Пусть $(v_1, \ldots, v_k) \in \mathcal{W}^k$ и в наборе $(w_1, \ldots, w_m) \in \mathcal{W}^m$ каждая из формул $w_j, j \in \{1, \ldots, m\}$, либо имеет вид $v_{i_1} * v_{i_2}, i_1 \neq i_2, i_1, i_2 \in \{1, \ldots, k\}$, либо является некоторой формулой $v_i, i \in \{1, \ldots, k\}$. Тогда будем говорить, что набор формул (w_1, \ldots, w_m) является результатом преобразования набора формул (v_1, \ldots, v_k) .

Один из способов построения произвольного набора формул (w_1, \ldots, w_m) заключается в последовательном преобразовании набора переменных (x_1, \ldots, x_n) . Для исследования свойств отображений одного класса, соответствующего определённому набору формул, введём дополнительное представление процесса преобразований набора формул, которое отличается большей наглядностью.

Определение 2. Пусть $t, n_0, n_1, \ldots, n_t \in \mathbb{N}$ и

$$X_0 = \{x_1^{(0)}, x_2^{(0)}, \dots, x_{n_0}^{(0)}\}, \ X_1 = \{x_1^{(1)}, x_2^{(1)}, \dots, x_{n_1}^{(1)}\}, \ \dots, \ X_t = \{x_1^{(t)}, x_2^{(t)}, \dots, x_{n_t}^{(t)}\}$$

— семейство попарно непересекающихся конечных непустых множеств. Тогда $\kappa вази-$ spynnosoù cemью (далее — просто cemью) dnuhu t будем называть простой ориентированный граф Σ с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_t$, содержащий только рёбра вида $(x_i^{(s-1)}, x_j^{(s)})$, $s \in \{1, \ldots, t\}$, с тем ограничением, что степень захода каждой вершины $x_j^{(s)}$, $s \in \{1, \ldots, t\}$, равна 1 или 2. При этом если степень захода вершины $x_j^{(s)}$ равна 2, то рёбра $(x_{i_1}^{(s-1)}, x_j^{(s)})$ и $(x_{i_2}^{(s-1)}, x_j^{(s)})$ имеют различные метки из множества $\{l, r\}$. Число $\max\{n_0, \ldots, n_t\}$ будем называть mupunoù сети Σ . Множества X_0 и X_t называются множествами начальных и конечных вершин соответственно. Подграф Σ_s сети Σ , основанный на множестве вершин $X_{s-1} \cup X_s$, будем называть s-м c-лоем сети Σ . Сеть Σ называется $o\partial$ нослойной, если она имеет длину 1.

Определение 3. Пусть Σ и Σ' — сети с множествами вершин $X = X_0 \cup X_1 \cup \ldots \cup X_s$ и $X' = X_0' \cup X_1' \cup \ldots \cup X_t'$ соответственно и $X \cap X' = X_s = X_0'$. Тогда естественным образом можно определить сеть длины s+t с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_s \cup \ldots \cup X_1' \cup \ldots \cup X_t'$, которую будем называть *произведением* сетей Σ и Σ' и обозначать $\Sigma \cdot \Sigma'$.

Непосредственно из определений 2 и 3 следует, что произвольная сеть Σ длины tявляется произведением однослойных сетей: $\Sigma = \Sigma_1 \cdot \ldots \cdot \Sigma_t$.

Определение 4. Пусть (v_1,\ldots,v_n) — произвольный набор формул и Σ — однослойная сеть с множеством вершин $\{x_1^0,\dots,x_n^{(0)}\}\cup\{x_1^{(1)},\dots,x_m^{(1)}\}$. Тогда определим набор формул (w_1, \ldots, w_m) по следующим правилам:

- если вершине $x_j^{(1)}$ инцидентно единственное ребро $(x_i^{(0)}, x_j^{(1)})$, то полагаем $w_j = v_i$; если вершине $x_j^{(1)}$ инцидентны рёбра $(x_{i_1}^{(0)}, x_j^{(1)})$ и $(x_{i_2}^{(0)}, x_j^{(1)})$ с метками l и r соответственно, то полагаем $w_j = v_{i_1} * v_{i_2}$.

При этом будем говорить, что однослойная сеть Σ описывает преобразование набора формул (v_1, \ldots, v_n) в набор формул (w_1, \ldots, w_m) . Произвольная сеть Σ является произведением однослойных сетей, являющихся её слоями, и потому естественным образом описывает последовательность преобразований набора формул.

Пусть $F \in \mathcal{Q}(\Omega)$ — произвольная квазигруппа и сеть Σ описывает последовательность преобразований набора переменных (x_1,\ldots,x_n) в набор формул (w_1,\ldots,w_m) . Тогда отображение $(w_1^F,\ldots,w_m^F)\colon \Omega^n\to\Omega^m$ будем обозначать Σ^F .

Нетрудно понять, что если $\Sigma = \Sigma_1 \cdot \Sigma_2$, то при выборе любой квазигруппы F справедливо соответствующее равенство отображений $\Sigma^F = \Sigma_1^F \cdot \Sigma_2^F$.

Определение 5. Будем говорить, что сети Σ и Σ' эквивалентны для множе $cmea~\Omega,$ если при выборе любой квазигруппы $F\in\mathcal{Q}(\Omega)$ отображения Σ^F и Σ'^F совпадают. Будем говорить, что сети Σ и Σ' эквивалентны, если они эквивалентны для любого множества.

Замечание 1. Если сети Σ и Σ' описывают преобразование набора переменных (x_1,\ldots,x_n) в наборы формул (w_1,\ldots,w_m) и (w_1',\ldots,w_m') соответственно, то совпадение указанных наборов формул является достаточным условием для эквивалентности сетей Σ и Σ' . Более того, верно и обратное утверждение (теорема 7 в [1]).

Определение 6. Сеть Σ будем называть биективной для множества Ω , если при выборе любой квазигруппы $F \in \mathcal{Q}(\Omega)$ отображение Σ^F является биективным. Сеть Σ будем называть $\mathit{биективной}$, если она биективна для любого множества.

Очевидно, что для биективности сети Σ с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_t$ необходимо, чтобы множества начальных и конечных вершин были равномощны, то есть выполнялось равенство $|X_0| = |X_t|$.

Определение 7. Сеть Σ с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_t$ будем называть сетью постоянной ширины, если $|X_0| = |X_1| = \ldots = |X_t|$.

В данной работе рассматриваются только сети постоянной ширины, поэтому будем использовать термин «cemb», подразумевая при этом cemb постоянной ширины.

Определение 8. Пусть Σ — однослойная сеть с множеством вершин $X_0 \cup X_1$. Вершину $x_i^{(0)} \in X_0$ сети Σ будем называть *неподвижной*, если Σ содержит ребро $(x_i^{(0)}, x_i^{(1)})$. Сеть Σ будем называть элементарной, если все вершины из множества X_0 неподвижны и ровно одна вершина из множества X_1 имеет степень захода 2.

Элементарную сеть с множеством вершин $X_0 \cup X_1$, которая содержит рёбра $(x_i^{(0)}, x_i^{(1)})$ и $(x_j^{(0)}, x_i^{(1)})$, будем обозначать $\Sigma_i^{\{i,j\}}$. В случае, когда ребро $(x_i^{(0)}, x_i^{(1)})$ имеет метку l, обозначение можно уточнить как $\Sigma_i^{(i,j)}$, а если оно имеет метку r- как $\Sigma_i^{(j,i)}$.

Произвольная элементарная сеть всегда является биективной. Ещё одним важным примером биективных сетей являются сети с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_t$, у которых степень захода каждой вершины $x_{j}^{(s)}, s \in \{1, \ldots, t\}$, равна 1. Такие сети будем называть перестановочными. Произвольная перестановочная сеть определяет отображение $\Omega^n \to \Omega^n$, не зависящее от выбора квазигруппы $F \in \mathcal{Q}(\Omega)$ и действующее на множестве Ω^n как перестановка координат вектора. Отсюда следует, что любая перестановочная сеть эквивалентна однослойной перестановочной сети.

Элементарные и перестановочные сети являются примерами простейших биективных сетей, однако этих примитивов достаточно для реализации произвольной биективной сети.

Теорема 1 (следствие 7 в [1]). Сеть Σ является биективной в том и только в том случае, когда она эквивалентна произведению

$$\Sigma_{R1} \cdot \ldots \cdot \Sigma_{Rt} \cdot \Pi_R$$
 (или $\Pi_L \cdot \Sigma_{L1} \cdot \ldots \cdot \Sigma_{Lt}$),

где $\Sigma_{R1}, \ldots, \Sigma_{Rt}$ ($\Sigma_{L1}, \ldots, \Sigma_{Lt}$) — элементарные сети, а Π_R (Π_L) — однослойная перестановочная сеть. При этом произведение определено однозначно с точностью до возможной перестановки элементарных сетей, а количество элементарных сетей в произведении равно количеству вершин сети Σ со степенью захода 2.

Количество вершин сети Σ со степенью захода 2 будем называть весом cemu Σ или её сложностью и обозначать $\|\Sigma\|$.

Учитывая теорему 1, не ограничивая общности, можно считать, что произвольная биективная сеть Σ представляет собой произведение $\Sigma_1 \cdot \ldots \cdot \Sigma_t \cdot \Pi$ с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_t \cup X_{t+1}$, где $\Sigma_1, \ldots, \Sigma_t$ – элементарные сети; Π – однослойная перестановочная сеть. Также, не ограничивая общности, можно считать, что $\Omega \subset \mathbb{N}$.

Определение 9. Если для элементов $y_1, y_2, y_3 \in \mathbb{N}$ и частично определённого отображения $F \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ выполняется соотношение $F(y_1, y_2) = y_3$, то будем говорить, что элементы y_1 и y_2 содержатся в области определения отображения F, а элемент $y_3 - в$ области значений отображения F.

Определение 10. Частично определённое отображение $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, удовлетворяющее условию

$$(F(y_1,y_2)=F(y_1',y_2'))\Longrightarrow ((y_1,y_2)=(y_1',y_2')$$
 или $(y_1\neq y_1',y_2\neq y_2'))$

при всех допустимых $y_1, y_2, y_1', y_2' \in \mathbb{N}$, будем называть частично определённым отображением без противоречий (или частично определённым непротиворечивым отображением).

Определение 11. Разметкой сети $\Sigma = \Sigma_1 \cdot \ldots \cdot \Sigma_t \cdot \Pi$ будем называть произвольное отображение $\mu: X_0 \cup X_1 \cup \ldots \cup X_t \cup X_{t+1} \to \mathbb{N}$. Пусть $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — частично определённое отображение. Тогда разметку μ сети Σ , которая удовлетворяет следующим условиям:

- - если $\deg^-x_i^{(s)}=2$ и рёбра $(x_i^{(s-1)},x_i^{(s)}),\,(x_j^{(s-1)},x_i^{(s)})$ имеют метки r и l соответственно, то $\mu(x_i^{(s)})=F(\mu(x_j^{(s-1)}),\mu(x_i^{(s-1)}));$
- если перестановочная сеть Π содержит рёбра $(x_{i_k}^{(t)}, x_k^{(t+1)}), k \in \{1, \dots, n\}$, то выполняются равенства $\mu(x_k^{(t+1)}) = \mu(x_{i_k}^{(t)}), k \in \{1, \dots, n\},$

будем называть правильной относительно F. При этом само отображение F будем называть правилом разметки μ .

Определение 12. Пусть μ —разметка сети Σ с правилом F и при этом никакое сужение частичного отображения F не является правилом разметки μ . Тогда будем говорить, что F является минимальным правилом разметки μ . Нетрудно понять, что минимальное правило разметки μ определено однозначно. Правильную разметку μ будем называть непротиворечивой, если её минимальное правило является непротиворечивым отображением.

Определение 13. Если для разметки μ сети Σ выполняется система равенств $\{\mu(x_{i_j}^{(s_j)})=v_j:j\in J\}$, то будем говорить, что $\mu-p$ азметка сети Σ с условиями $\{\mu(x_{i_j}^{(s_j)})=v_j:j\in J\}$. Система равенств $\mu(x_1^{(0)})=v_1,\ldots,\mu(x_n^{(0)})=v_n$ называется начальным условием разметки μ , при этом говорят, что $\mu-$ разметка с начальным условием (v_1,\ldots,v_n) .

Каждая правильная разметка сети Σ однозначно определяется своим начальным условием и правилом. В тех случаях, когда при некоторой разметке вершин $x_1^{(0)}, \ldots, x_n^{(0)}$ сети Σ для полного задания правильной разметки не хватает области определения частично определённого отображения F, можно непротиворечивым образом расширить область определения F и тем самым определить разметку с правилом F. Поясним это подробнее.

Пусть задана начальная разметка $\mu(x_1^{(0)}) = v_1, \ldots, \mu(x_n^{(0)}) = v_n$ сети Σ и $\mathbb{N}\setminus\{v_1,\ldots,v_n\}\supset\{y_1,y_2,\ldots\}$ —счётное множество меток, которые не содержатся ни в области определения, ни в области значений правила F (при этом возможно, что метки v_1,\ldots,v_n также не содержатся ни в области определения, ни в области значений правила F). Тогда продолжим разметку μ сети Σ по следующему правилу:

- для всех $s \in \{1,\dots,t\}$ при $\Sigma_s = \Sigma_i^{\{i,j\}}$ положим $\mu(x_l^{(s)}) = \mu(x_l^{(s-1)}),$ если $l \neq i,$ а для разметки вершины $x_i^{(s)}$ возможны следующие варианты:
 - если $\Sigma_s = \Sigma_i^{(i,j)}$ и значение $F\left(\mu(x_i^{(s-1)}), \mu(x_j^{(s-1)})\right)$ определено, то пометим вершину $x_i^{(s)}$ меткой $F\left(\mu(x_i^{(s-1)}), \mu(x_j^{(s-1)})\right)$, иначе пометим вершину $x_i^{(s)}$ ранее не использованной меткой y_s и определим $F\left(\mu(x_i^{(s-1)}), \mu(x_j^{(s-1)})\right) = y_s$;
 - если $\Sigma_s = \Sigma_i^{(j,i)}$ и значение $F\left(\mu(x_j^{(s-1)}), \mu(x_i^{(s-1)})\right)$ определено, то пометим вершину $x_i^{(s)}$ меткой $F\left(\mu(x_j^{(s-1)}), \mu(x_i^{(s-1)})\right)$, иначе пометим вершину $x_i^{(s)}$ ранее не использованной меткой y_s и определим $F\left(\mu(x_j^{(s-1)}), \mu(x_i^{(s-1)})\right) = y_s$;
- если перестановочная сеть П содержит рёбра $(x_{i_k}^{(t)},x_k^{(t+1)}), k \in \{1,\ldots,n\}$, то положим $\mu(x_k^{(t+1)})=\mu(x_{i_k}^{(t)}), k \in \{1,\ldots,n\}$.

При проведении разметки μ сети Σ описанным способом частично определённое (непротиворечивое) отображение F корректным образом продолжается до частично определённого (непротиворечивого) отображения, которое будем обозначать $F_{\Sigma,\mu}$, при этом построенная разметка μ является правильной относительно $F_{\Sigma,\mu}$.

Определение 14. Описанную процедуру продолжения разметки μ и расширения области определения F будем называть csofodhum продолжением начальной размет- $\kappa u \ \mu(x_1^{(0)}) = v_1, \ldots, \ \mu(x_n^{(0)}) = v_n \ u \ e \ npasuna \ F \ omnocumenьно \ cemu \ \Sigma.$

Пусть η и μ — разметки сети Σ и для отображения $\sigma_{\mu} \colon \mathbb{N} \to \mathbb{N}$ справедливо соотношение $\sigma_{\mu} \circ \eta = \mu$, то есть при всех $s \in \{0, \dots, t+1\}$ и $i \in \{1, \dots, n\}$ выполняется равенство $\sigma_{\mu}(\eta(x_i^{(s)})) = \mu(x_i^{(s)})$. Тогда будем обозначать это условие как $\sigma_{\mu} \colon \eta \to \mu$.

Определение 15. Правильную разметку η сети Σ с начальным условием (v_1, \ldots, v_n) будем называть csofodhoù, если для любой правильной разметки μ сети Σ с начальным условием (v_1, \ldots, v_n) существует отображение σ_{μ} , удовлетворяющее условию σ_{μ} : $\eta \to \mu$.

Непосредственно из определения свободной разметки следует, что при условии существования свободная разметка сети Σ с начальным условием (v_1, \ldots, v_n) определена однозначно с точностью до обратимого переобозначения меток.

Теорема 2 (теорема 3 в [1]). Пусть разметка η получена в результате свободного продолжения начальной разметки $\eta(x_1^{(0)}) = v_1, \ldots, \eta(x_n^{(0)}) = v_n$ и пустого правила G относительно сети Σ . Тогда η — свободная разметка сети Σ с начальным условием (v_1,\ldots,v_n) , а отображение $G_{\Sigma,\eta}$ — её минимальное правило.

Определение 16. Биективную сеть Σ будем называть *транзитивной для мно*жества Ω , если множество отображений $\{\Sigma^F : F \in \mathcal{Q}(\Omega)\}$ является транзитивным.

Нетрудно понять, что сама природа множества Ω в данном определении не играет никакой роли, поэтому корректно говорить, что биективная сеть Σ является транзитивной для множеств мощности q. По-прежнему будем считать, что $\Omega \subset \mathbb{N}$, а для множества $\{1, \ldots, q\}$ будем использовать обозначение Ω_q .

Определение 17. Разметку μ сети Σ с условиями

$$\mu(x_1^{(0)}) = v_1, \ldots, \ \mu(x_n^{(0)}) = v_n, \ \mu(x_1^{(t)}) = w_1, \ldots, \ \mu(x_n^{(t)}) = w_n$$

будем называть разметкой сети Σ с ограничениями $\begin{pmatrix} v_1 & \dots & v_n \\ w_1 & \dots & w_n \end{pmatrix}$. При этом будем говорить, что сеть Σ допускает разметку μ с ограничениями $\begin{pmatrix} v_1 & \dots & v_n \\ w_1 & \dots & w_n \end{pmatrix}$.

Теорема 3 (теорема 11 в [1]). Сеть Σ допускает правильные непротиворечивые разметки при всех возможных ограничениях $\begin{pmatrix} v_1 & \dots & v_n \\ w_1 & \dots & w_n \end{pmatrix}$ из $\mathbb N$ в том и только в том случае, когда сеть Σ допускает правильные непротиворечивые разметки при всех возможных ограничениях $\begin{pmatrix} \bar v_1 & \dots & \bar v_n \\ \bar w_1 & \dots & \bar w_n \end{pmatrix}$ из Ω_2 .

Следствие 1 (следствие 12 в [1]). Пусть $\Sigma-$ биективная сеть ширины n и $\Omega-$ множество мощности не менее чем $\|\Sigma\|+n$. Тогда следующие утверждения эквивалентны:

- 1) сеть Σ является транзитивной для множества Ω ;
- 2) сеть Σ допускает правильную непротиворечивую разметку элементами множества Ω при любых ограничениях $\begin{pmatrix} v_1 & \dots & v_n \\ w_1 & \dots & w_n \end{pmatrix}$ из множества Ω ;
- 3) сеть Σ допускает правильную непротиворечивую разметку элементами множества Ω при любых ограничениях $\begin{pmatrix} \bar{v}_1 & \dots & \bar{v}_n \\ \bar{w}_1 & \dots & \bar{w}_n \end{pmatrix}$ из множества $\Omega_2 \subset \Omega$;
- 4) множество преобразований $\{\Sigma^F : F \in \mathcal{Q}(\Omega)\}$ действует транзитивным образом на подмножестве $\Omega_2^n \subset \Omega^n$.

1. 2-Разметка биективных сетей

Определение 18. Биективную сеть Σ будем называть 2-транзитивной для множества Ω , если множество отображений $\{\Sigma^F : F \in \mathcal{Q}(\Omega)\}$ является 2-транзитивным.

Нетрудно понять, что сама природа конечного множества Ω в данном определении не играет никакой роли, поэтому корректно говорить, что биективная сеть Σ является 2-транзитивной для множеств мощности q. Не ограничивая общности, будем считать, что $\Omega \subset \mathbb{N}$. Очевидно

Утверждение 1. Пусть Σ —произвольная 2-транзитивная для множества Ω сеть, а Π_1, Π_2 —произвольные перестановочные сети, для которых корректно определить произведения $\Pi_1 \cdot \Sigma$ и $\Sigma \cdot \Pi_2$. Тогда сети $\Pi_1 \cdot \Sigma$ и $\Sigma \cdot \Pi_2$ также 2-транзитивны для множества Ω .

Не ограничивая общности, будем считать, что произвольная биективная сеть Σ представляет собой произведение элементарных сетей $\Sigma_1 \cdot \ldots \cdot \Sigma_t$ с множеством вершин $X_0 \cup X_1 \cup \ldots \cup X_t$.

Введенный в [1] аппарат разметки сетей на самом деле позволяет проверять не только транзитивность сети, но и более сложное свойство k-транзитивности при $k \geqslant 2$. Так, например, из 2-транзитивности биективной сети Σ для множества Ω следует, что для любых $(v_{11},\ldots,v_{1n})\neq (v_{21},\ldots,v_{2n}), (w_{11},\ldots,w_{1n})\neq (w_{21},\ldots,w_{2n})\in \Omega^n$ сеть Σ допускает пару правильных разметок с ограничениями $\begin{pmatrix} v_{11}&\ldots&v_{1n}\\w_{11}&\ldots&w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21}&\ldots&v_{2n}\\w_{21}&\ldots&w_{2n} \end{pmatrix}$ и общим непротиворечивым правилом.

Определение 19. Произвольную пару $\mu = (\mu_1, \mu_2)$ разметок сети Σ будем называть 2-разметкой сети Σ . При этом метки разметок μ_1 и μ_2 будем называть метками 2-разметки μ . Пусть $F \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — частично определённое отображение. Тогда 2-разметку $\mu = (\mu_1, \mu_2)$ сети Σ будем называть *правильной относительно* F, если каждая из разметок μ_1 и μ_2 является правильной относительно F, а отображение F будем называть *правилом* 2-разметки μ .

Определение 20. Пусть μ —2-разметка сети Σ с правилом F и никакое сужение частичного отображения F не является правилом 2-разметки μ . Тогда будем говорить, что F является минимальным правилом 2-разметки μ . Правильную 2-разметку μ будем называть непротиворечивой, если её минимальное правило является непротиворечивым отображением.

Определение 21. Если для 2-разметки μ сети Σ выполняются системы равенств $\{\mu_1(x_{i_j}^{(s_j)})=v_j:j\in J_1\}$ и $\{\mu_2(x_{i_j}^{(s_j)})=v_j:j\in J_2\}$, то будем говорить, что μ является 2-разметкой сети Σ с условиями $\{\mu_1(x_{i_j}^{(s_j)})=v_j:j\in J_1\}$ и $\{\mu_2(x_{i_j}^{(s_j)})=v_j:j\in J_2\}$. Системы равенств $\mu_1(x_1^{(0)})=v_{11},\ldots,\mu_1(x_n^{(0)})=v_{1n}$ и $\mu_2(x_1^{(0)})=v_{21},\ldots,\mu_2(x_n^{(0)})=v_{2n}$ называются начальным условием 2-разметки μ , при этом говорят, что μ — 2-разметка с начальным условием (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) .

В дальнейшем систему равенств $\mu_1(x_1^{(0)})=v_{11},\ldots,\,\mu_1(x_n^{(0)})=v_{1n}$ и $\mu_2(x_1^{(0)})=v_{21},\ldots,\,\mu_2(x_n^{(0)})=v_{2n}$ также будем называть начальной разметкой сети Σ (несмотря на то, что словосочетание «начальная разметка» не определено), полагая при этом, что задана 2-разметка $\mu_1(x_1^{(0)})=v_{11},\ldots,\,\mu_1(x_n^{(0)})=v_{1n}$ и $\mu_2(x_1^{(0)})=v_{21},\ldots,\,\mu_2(x_n^{(0)})=v_{2n}$ начальных вершин сети Σ .

Каждая правильная 2-разметка сети Σ однозначно определяется своим начальным условием. В тех случаях, когда при некоторой 2-разметке вершин $x_1^{(0)}, \dots, x_n^{(0)}$ сети Σ

для полного задания правильной 2-разметки не хватает области определения имеющегося правила, можно предложить два способа продолжения начальной разметки и непротиворечивого расширения области определения правила. Пусть задана начальная 2-разметка $\mu_1(x_1^{(0)}) = v_{11}, \ldots, \mu_1(x_n^{(0)}) = v_{1n}$ и $\mu_2(x_1^{(0)}) = v_{21}, \ldots, \mu_2(x_n^{(0)}) = v_{2n}$ сети Σ , а также $\mathbb{N}\setminus\{v_{11},v_{21},\ldots,v_{1n},v_{2n}\}\supset\{y_{11},y_{21},y_{12},y_{22},\ldots\}$ — счётное множество меток, которые не содержатся ни в области определения, ни в области значений правила F (при этом возможно, что метки $v_{11},v_{21},\ldots,v_{1n},v_{2n}$ также не содержатся ни в области определения, ни в области значений правила F).

Последовательное свободное продолжение разметки. С использованием множества меток $\{y_{11},y_{12},\ldots\}$ проведём свободное продолжение начальной разметки $\mu_1(x_1^{(0)})=v_{11},\ldots,\mu_1(x_n^{(0)})=v_{1n}$ и её правила F относительно сети Σ . Затем, используя множество меток $\{y_{21},y_{22},\ldots\}$, проведём свободное продолжение начальной разметки $\mu_2(x_1^{(0)})=v_{21},\ldots,\mu_2(x_n^{(0)})=v_{2n}$ и её правила F_{Σ,μ_1} относительно сети Σ . В результате получим 2-разметку $\mu=(\mu_1,\mu_2)$ сети Σ с начальным условием (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) .

Нетрудно понять, что при проведении 2-разметки μ сети Σ описанным способом частично определённое (непротиворечивое) отображение F корректным образом продолжается до частично определённого (непротиворечивого) отображения $(F_{\Sigma,\mu_1})_{\Sigma,\mu_2}$, которое будем обозначать $F'_{\Sigma,\mu}$, а построенная 2-разметка μ является правильной относительно $F'_{\Sigma,\mu}$.

Описанную процедуру продолжения 2-разметки μ и расширения области определения F будем называть последовательным свободным продолжением начальной 2-разметки $\mu_1(x_1^{(0)})=v_{11},\ldots,\,\mu_1(x_n^{(0)})=v_{1n}$ и $\mu_2(x_1^{(0)})=v_{21},\ldots,\,\mu_2(x_n^{(0)})=v_{2n}$ и её правила F относительно сети Σ . При этом будем говорить, что 2-разметка μ получена в результате последовательного свободного продолжения начальной 2-разметки $\mu_1(x_1^{(0)})=v_{11},\ldots,\,\mu_1(x_n^{(0)})=v_{1n}$ и $\mu_2(x_1^{(0)})=v_{21},\ldots,\,\mu_2(x_n^{(0)})=v_{2n}$ и её правила F относительно сети Σ .

Параллельное свободное продолжение разметки. Продолжим начальную 2-разметку μ сети Σ , пользуясь следующими правилами при всех $s \in \{1, \ldots, t\}$:

— если $\Sigma_s = \Sigma_i^{\{i_1,i_2\}}$, то при $l \neq i$ положим $\mu_1(x_l^{(s)}) = \mu_1(x_l^{(s-1)})$ и $\mu_2(x_l^{(s)}) = \mu_2(x_l^{(s-1)})$; — если $\Sigma_s = \Sigma_i^{(i_1,i_2)}$ и значение $F\left(\mu_1(x_{i_1}^{(s-1)}),\mu_1(x_{i_2}^{(s-1)})\right)$ определено, то положим $\mu_1(x_i^{(s)}) = F\left(\mu_1(x_{i_1}^{(s-1)}),\mu_1(x_{i_2}^{(s-1)})\right)$, в противном случае положим $\mu_1(x_i^{(s)}) = y_{1s}$ и доопределим $F\left(\mu_1(x_{i_1}^{(s-1)}),\mu_1(x_{i_2}^{(s-1)})\right) = y_{1s}$; после этого, если значение $F\left(\mu_2(x_{i_1}^{(s-1)}),\mu_2(x_{i_2}^{(s-1)})\right)$ определено, то положим $\mu_2(x_i^{(s)}) = F\left(\mu_2(x_{i_1}^{(s-1)}),\mu_2(x_{i_2}^{(s-1)})\right)$, в противном случае положим $\mu_2(x_i^{(s)}) = y_{2s}$

Нетрудно понять, что при проведении 2-разметки μ сети Σ описанным способом частично определённое (непротиворечивое) отображение F корректным образом продолжается до частично определённого (непротиворечивого) отображения, которое будем обозначать $F''_{\Sigma,\mu}$, а построенная 2-разметка μ является правильной относительно $F''_{\Sigma,\mu}$.

и доопределим $F\left(\mu_2(x_{i_1}^{(s-1)}), \mu_2(x_{i_2}^{(s-1)})\right) = y_{2s}.$

Описанную процедуру продолжения 2-разметки μ и расширения области определения F будем называть параллельным свободным продолжением начальной 2-размет-ки $\mu_1(x_1^{(0)}) = v_{11}, \ldots, \mu_1(x_n^{(0)}) = v_{1n}$ и $\mu_2(x_1^{(0)}) = v_{21}, \ldots, \mu_2(x_n^{(0)}) = v_{2n}$ и её правила F относительно сети Σ . При этом будем говорить, что 2-разметка μ получена в резуль-

тате параллельного свободного продолжения начальной 2-разметки $\mu_1(x_1^{(0)}) = v_{11}, \ldots, \mu_1(x_n^{(0)}) = v_{1n}$ и $\mu_2(x_1^{(0)}) = v_{21}, \ldots, \mu_2(x_n^{(0)}) = v_{2n}$ и её правила F относительно сети Σ .

Теорема 4. Пусть 2-разметка μ' получена в результате последовательного свободного продолжения начальной 2-разметки $\mu_1(x_1^{(0)}) = v_{11}, \ldots, \mu_1(x_n^{(0)}) = v_{1n}$ и $\mu_2(x_1^{(0)}) = v_{21}, \ldots, \mu(x_n^{(0)}) = v_{2n}$ и правила F относительно сети Σ , а 2-разметка μ'' —в результате параллельного свободного продолжения начальной 2-разметки $\mu_1(x_1^{(0)}) = v_{11}, \ldots, \mu_1(x_n^{(0)}) = v_{1n}$ и $\mu_2(x_1^{(0)}) = v_{21}, \ldots, \mu(x_n^{(0)}) = v_{2n}$ и правила F относительно сети Σ . Тогда 2-разметки μ' и μ'' отличаются только обратимой заменой меток.

Доказательство. Пусть y_{2j_1},\ldots,y_{2j_r} — все метки вида y_{2*} , которые содержатся в разметке μ_1'' , и $\mu_1''(x_{i_1}^{(s_1)})=y_{2j_1},\ldots,\mu_1''(x_{i_r}^{(s_r)})=y_{2j_r}$ — первые появления указанных меток в разметке μ_1'' . Тогда нетрудно понять, что в 2-разметке μ'' отсутствуют метки y_{1s_1},\ldots,y_{1s_r} и обратимая замена меток $y_{2j_1}\to y_{1s_1},\ldots,y_{2j_r}\to y_{1s_r}$ переводит 2-разметку μ'' в 2-разметку μ' .

Замечание 2. Вообще говоря, свободное продолжение 2-разметки можно было определить не только последовательным и параллельным способами, но и любым «промежуточным способом», использующим произвольную последовательность продолжения обеих компонент 2-разметки; в результате получилась бы 2-разметка, отличающаяся от последовательного (параллельного) свободного продолжения только обратимым переобозначением меток. Другими словами, главное в свободном продолжении 2-разметки — это не порядок продолжения, а его «свобода» в каждый момент.

Пусть $\eta = (\eta_1, \eta_2)$ и $\mu = (\mu_2, \mu_2) - 2$ -разметки сети Σ и для отображения σ выполняются соотношения $\sigma \circ \eta_1 = \mu_1$ и $\sigma \circ \eta_2 = \mu_2$. Будем обозначать это условие $\sigma \colon \eta \to \mu$.

Определение 22. Правильную 2-разметку η сети Σ с начальным условием (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) будем называть csobodной, если для любой правильной 2-разметки μ сети Σ с начальным условием (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) существует отображение σ_{μ} , удовлетворяющее условию σ_{μ} : $\eta \to \mu$.

Непосредственно из определения свободной 2-разметки следует, что при условии существования свободная 2-разметка сети Σ с начальным условием (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) определена однозначно с точностью до обратимого переобозначения остальных меток.

Теорема 5. Пусть 2-разметка η получена в результате параллельного свободного продолжения начальной 2-разметки $\eta_1(x_1^{(0)}) = v_{11}, \ldots, \eta_1(x_n^{(0)}) = v_{1n}$ и $\eta_2(x_1^{(0)}) = v_{21}$, $\ldots, \eta(x_n^{(0)}) = v_{2n}$ и пустого правила G относительно сети Σ . Тогда η — свободная 2-разметка сети Σ , а отображение $G_{\Sigma,\eta}$ — её минимальное правило.

Доказательство. Из определения процедуры свободного продолжения начальной 2-разметки $\eta_1(x_1^{(0)})=v_{11},\ldots,\,\eta_1(x_n^{(0)})=v_{1n}$ и $\eta_2(x_1^{(0)})=v_{21},\ldots,\,\eta_2(x_n^{(0)})=v_{2n}$ и её пустого правила G относительно сети Σ следует, что 2-разметка η является непротиворечивой, а её минимальное правило $G_{\Sigma,\eta}$ удовлетворяет условию

$$(G_{\Sigma,\eta}(z_1, z_2) = G_{\Sigma,\eta}(z_3, z_4)) \Longrightarrow ((z_1, z_2) = (z_3, z_4))$$
 (1)

при всех допустимых $z_1, z_2, z_3, z_4 \in \mathbb{N}$.

Пусть μ — произвольная правильная 2-разметка сети Σ с тем же начальным условием, что и 2-разметка η . Тогда для доказательства существования отображения σ_{μ} : $\eta \to \mu$ достаточно показать, что при совпадении меток $\eta_{i_1}(x_i^{(s)}) = \eta_{i_2}(x_j^{(r)})$ также выполняется равенство соответствующих меток $\mu_{i_1}(x_i^{(s)}) = \mu_{i_2}(x_j^{(r)})$.

He ограничивая общности, будем считать, что $\Sigma = \Sigma_1 \cdot \ldots \cdot \Sigma_t$. Докажем утверждение

индукцией по длине произведения $\Sigma_1 \cdot \ldots \cdot \Sigma_t$. База индукции при t=1 очевидна. Пусть $\Sigma = \Sigma_1 \cdot \ldots \cdot \Sigma_{t-1} \cdot \Sigma_t$ —сеть длины t>1 и $\Sigma_t = \Sigma_k^{\{k,l\}}$. Рассмотрим все возможные варианты для пары вершин $x_i^{(s)}$ и $x_j^{(r)}$:

- 1) Если r, s < t, то истинность утверждения следует из предположения индукции.
- 2) Если r < t, s = t и $k \neq i$, то выполняется равенство $\eta_{i_1}(x_i^{(s-1)}) = \eta_{i_2}(x_i^{(r)})$ и остаётся воспользоваться предположением индукции.
- 3) Если r = t, s < t и $k \neq j$, то выполняется равенство $\eta_{i_1}(x_i^{(s)}) = \eta_{i_2}(x_i^{(r-1)})$ и остаётся воспользоваться предположением индукции.
- 4) Если r=s=t и $k\notin\{i,j\}$, то выполняется равенство $\eta_{i_1}(x_i^{(s-1)})=\eta_{i_2}(x_i^{(r-1)})$ и остаётся воспользоваться предположением индукции.
- 5) В случае, когда s=t и $\Sigma_t=\Sigma_i^{\{i,t\}}$, не ограничивая общности, будем считать, что $\Sigma_t = \Sigma_i^{(i,l)}$. Из определения процедуры свободного продолжения разметки следует, что $\eta_{i_1}(x_i^{(s)}) \notin \{v_{11},v_{21},\ldots,v_{1n},v_{2n}\}$, а минимальное правило 2-разметки η удовлетворяет условию (1). Значит, равенство меток $\eta_{i_1}(x_i^{(s)}) = \eta_{i_2}(x_i^{(r)})$ влечёт за собой совпадение упорядоченных наборов меток $(\eta_{i_1}(x_i^{(s-1)}), \eta_{i_1}(x_l^{(s-1)}))$ и, не ограничивая общности, $(\eta_{i_2}(x_j^{(r')}), \eta_{i_2}(x_{l'}^{(r')}))$, где $r' \in \{0, \dots, r-1\}$ — наибольшее со свойством $\eta_{i_2}(x_j^{(r')}) \neq \eta_{i_2}(x_j^{(r)})$. По предположению индукции упорядоченные наборы меток $(\mu_{i_1}(x_i^{(s-1)}), \mu_{i_1}(x_l^{(s-1)}))$ и $(\mu_{i_2}(x_j^{(r')}), \mu_{i_2}(x_{l'}^{(r')}))$ также совпадают и, следовательно, выполняются равенства $\mu_{i_1}(x_i^{(s)}) = \mu_{i_2}(x_i^{(r'+1)}) = \mu_{i_2}(x_i^{(r)}).$
- 6) Случай, когда r=t и $\Sigma_t=\Sigma_j^{\{j,l\}}$, доказывается аналогично 5. Теорема доказана. ■

Замечание 3. Поскольку свободная 2-разметка сети Σ с начальным условием (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) определена однозначно с точностью до переобозначений, то, не ограничивая общности, можно считать, что произвольная свободная 2-разметка η сети Σ может быть получена при помощи параллельного (последовательного) свободного продолжения начальной 2-разметки $\eta_1(x_1^{(0)})=v_{11},\ldots,\;\eta_1(x_n^{(0)})=v_{1n}$ и $\eta_2(x_1^{(0)}) = v_{21}, \ldots, \eta_2(x_n^{(0)}) = v_{2n}$ и её пустого правила G относительно сети Σ .

Теорема 6. Пусть η — свободная 2-разметка сети Σ , μ — правильная 2-разметка сети Σ и возможно определить отображение σ_{μ} по правилу $\sigma_{\mu}(\eta_1(x_i^{(0)})) = \mu_1(x_i^{(0)}),$ $\sigma_{\mu}(\eta_{2}(x_{i}^{(0)})) = \mu_{2}(x_{i}^{(0)}), i \in \{1,\ldots,n\}.$ Тогда отображение σ_{μ} допускает продолжение, удовлетворяющее условию $\sigma_{\mu} \colon \eta \to \mu$.

Доказательство. Достаточно показать, что при совпадении меток $\eta_{i_1}(x_i^{(s)}) =$ $=\eta_{i_2}(x_i^{(r)})$ выполняется равенство соответствующих меток $\mu_{i_1}(x_i^{(s)})=\mu_{i_2}(x_i^{(r)})$. Это устанавливается индукцией по длине сети ∑ аналогично доказательству теоремы 5. ■

Следствие 2. В условиях теоремы 6 если G и F — минимальные правила 2-разметок η и μ соответственно, то при всех допустимых $z_i, z_j \in \mathbb{N}$ выполняется равенство $\sigma_{\mu}(G(z_i, z_j)) = F(\sigma_{\mu}(z_i), \sigma_{\mu}(z_j)).$

В заключение сформулируем и докажем одно простое утверждение, которое необходимо для лучшего понимания свободной 2-разметки.

Утверждение 2. Пусть $\eta = (\eta_1, \eta_2)$ — свободная 2-разметка сети Σ . Тогда каждая из разметок η_1 и η_2 является свободной разметкой сети Σ .

Доказательство. Пусть $\mu = (\mu_1, \mu_2) - 2$ -разметка сети Σ , полученная в результате последовательного свободного продолжения начальной разметки

$$\mu_1(x_1^{(0)}) = \eta_1(x_1^{(0)}) = v_{11}, \dots, \ \mu_1(x_n^{(0)}) = \eta_1(x_n^{(0)}) = v_{1n},$$

$$\mu_2(x_1^{(0)}) = \eta_2(x_1^{(0)}) = v_{21}, \dots, \mu_2(x_n^{(0)}) = \eta_2(x_n^{(0)}) = v_{2n}$$

и пустого правила. Тогда, согласно определению процедуры последовательного свободного продолжения 2-разметки, разметка μ_1 является свободной разметкой сети Σ с начальным условием (v_{11}, \ldots, v_{1n}) .

Согласно определению свободной 2-разметки, существует отображение σ_{μ} , удовлетворяющее условию σ_{μ} : $\eta \to \mu$, в частности, отображение σ_{μ} удовлетворяет условию σ_{μ} : $\eta_1 \to \mu_1$. Поскольку μ_1 —свободная разметка сети Σ с начальным условием (v_{11},\ldots,v_{1n}) , нетрудно понять, что η_1 также является свободной разметкой сети Σ . Аналогичным образом доказывается, что разметка η_2 является свободной разметкой сети Σ с начальным условием (v_{21},\ldots,v_{2n}) .

2. 2-Транзитивность сетей

Определение 23. 2-разметку $\mu = (\mu_1, \mu_2)$ сети Σ будем называть 2-разметкой сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$, если μ_1 и μ_2 —разметки сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ соответственно. При этом будем говорить, что сеть Σ допускает 2-разметку μ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$.

2-Разметку $\mu=(\mu_1,\mu_2)$ сети Σ с ограничениями будем называть нетривиальной, если μ_1 и μ_2 — различные разметки сети Σ , и тривиальной в противном случае. Для правильной непротиворечивой 2-разметки μ сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ её тривиальность равносильна двум равенствам $(v_{11},\dots,v_{1n})=(v_{21},\dots,v_{2n})$ и $(w_{11},\dots,w_{1n})=(w_{21},\dots,w_{2n})$. Поэтому далее будем подразумевать, что $(v_{11},\dots,v_{1n})\neq (v_{21},\dots,v_{2n})$ и $(w_{11},\dots,w_{1n})\neq (w_{21},\dots,w_{2n})$, когда будем говорить о нетривиальной правильной непротиворечивой 2-разметке μ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$. Если биективная сеть Σ является 2-транзитивной для некоторого множества Ω , то

Если биективная сеть Σ является 2-транзитивной для некоторого множества Ω , то для любых $(v_{11}, \ldots, v_{1n}) \neq (v_{21}, \ldots, v_{2n}), (w_{11}, \ldots, w_{1n}) \neq (w_{21}, \ldots, w_{2n}) \in \Omega^n$ существует такая квазигруппа $F \in \mathcal{Q}(\Omega)$, для которой выполняются равенства

$$\Sigma^F(v_{11},\ldots,v_{1n})=(w_{11},\ldots,w_{1n})$$
 if $\Sigma^F(v_{21},\ldots,v_{2n})=(w_{21},\ldots,w_{2n}).$

В таком случае квазигруппа F определяет нетривиальную правильную и непротиворечивую 2-разметку сети Σ элементами множества Ω с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$. Другими словами, существование нетривиальной правильной непротиворечивой 2-разметки сети Σ элементами множества Ω при произвольных ограниче-

ниях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ является необходимым условием того, чтобы сеть Σ была 2-транзитивной для множества Ω .

Теорема 7. Пусть Σ —биективная сеть ширины n и Ω —множество мощности строго больше чем $2\|\Sigma\|$. Тогда следующие утверждения эквивалентны:

- 1) сеть Σ является 2-транзитивной для множества Ω ;
- 2) сеть Σ допускает нетривиальную правильную непротиворечивую 2-разметку элементами множества Ω при любых ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \end{pmatrix}$

$$\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}.$$

Доказательство.

 $1 \Rightarrow 2$. Очевидно.

 $2 \Rightarrow 1$. Каждой правильной непротиворечивой 2-разметке сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ соответствует непротиворечивое правило, определенное не более чем на $2\|\Sigma\| \leqslant |\Omega| - 1$ наборах. Согласно гипотезе Эванса, данное правило продолжается до квазигруппы на множестве Ω . ■

Следствие 3. Для биективной сети Σ следующие утверждения эквивалентны:

- 1) сеть Σ является 2-транзитивной для некоторого множества, мощность которого строго больше чем $2\|\Sigma\| + 2n$;
- 2) сеть Σ является 2-транзитивной для произвольного множества, мощность которого строго больше чем $2\|\Sigma\| + 2n$.

Устранение противоречий в разметке. Пусть η — произвольная 2-разметка сети $\Sigma = \Sigma_1 \cdot \ldots \cdot \Sigma_t$. Свяжем с 2-разметкой η отношение $G \subset \mathbb{N}^3$, определённое следующим образом: G содержит тройку (y_l, y_r, y_q) в том и только в том случае, когда существует $s \in \{1, \ldots, t\}$, для которого $\Sigma_s = \Sigma_m^{(i,j)}$ и выполняется хотя бы одно из равенств

$$(\eta_1(x_i^{(s-1)}),\eta_1(x_j^{(s-1)}),\eta_1(x_m^{(s)}))=(y_l,y_r,y_q) \text{ или } (\eta_2(x_i^{(s-1)}),\eta_2(x_j^{(s-1)}),\eta_2(x_m^{(s)}))=(y_l,y_r,y_q).$$

Если в отношении G содержатся две тройки, отличающиеся только в одной координате, например (y_l, y_r, y_q) и (y_l, y_r, y_p) , то, заменив в 2-разметке η все метки y_p на y_q , получим 2-разметку $\eta^{(1)}$, в которой используется на одну метку меньше, чем в 2-разметке η . Если в отношении $G^{(1)}$, соответствующем 2-разметке $\eta^{(1)}$, присутствуют две тройки, отличающиеся только в одной координате, то повторим описанные действия, и так далее.

Таким способом построим последовательность 2-разметок $\eta = \eta^{(0)}, \eta^{(1)}, \dots$ сети Σ , в которой каждая следующая 2-разметка использует на одну метку меньше, чем предыдущая. По этой причине последовательность 2-разметок оборвётся на некотором конечном шаге, например с номером k, в том смысле, что в отношении $G^{(k)}$, соответствующем 2-разметке $\eta^{(k)}$, не найдётся двух троек, отличающихся только в одной координате. Построенная таким образом 2-разметка $\eta^{(k)}$ будет правильной и непротиворечивой разметкой сети Σ , хотя, возможно, тривиальной.

Описанную процедуру будем называть устранением противоречий в 2-разметке η . При этом будем говорить, что 2-разметка $\eta^{(d)}, d \in \{0, 1, \dots, k\}$, получена из 2-разметки η устранением противоречий.

Лемма 1. Пусть η — произвольная 2-разметка сети Σ , μ — правильная непротиворечивая 2-разметка сети Σ и существует отображение σ_{μ} : $\eta \to \mu$. Тогда для любой 2-разметки $\widetilde{\eta}$, полученной из 2-разметки η устранением противоречий, также выполняется условие σ_{μ} : $\widetilde{\eta} \to \mu$.

Доказательство. Пусть $\eta = \eta^{(0)}, \eta^{(1)}, \dots, \eta^{(k)} = \widetilde{\eta}$ — последовательность 2-разметок сети Σ , полученная в результате последовательного устранения противоречий в 2-разметке η . Для доказательства утверждения методом математической индукции достаточно показать, что для 2-разметки $\eta^{(1)}$ также выполняется условие $\sigma_{\mu} \colon \eta^{(1)} \to \mu$.

При построении 2-разметки $\eta^{(1)}$ в отношении G, соответствующем 2-разметке η , выбираются две тройки, отличающиеся только в одной координате. Рассмотрим все возможные случаи:

- 1) Если выбранная пара имеет вид (y_l, y_r, y_q) и (y_l, y_r, y_p) , то $\sigma_{\mu}(y_q) = \sigma_{\mu}(y_p)$, поскольку 2-разметка μ является правильной. Тогда при замене в 2-разметке η всех меток y_p на y_q получается 2-разметка $\eta^{(1)}$, для которой, очевидно, выполняется условие $\sigma_{\mu} \colon \eta^{(1)} \to \mu$.
- 2) Если выбранная пара имеет вид (y_l, y_r, y_q) и (y_l, y_p, y_q) , то $\sigma_{\mu}(y_r) = \sigma_{\mu}(y_p)$, поскольку 2-разметка μ является непротиворечивой. Тогда при замене в 2-разметке η всех меток y_p на y_r получается 2-разметка $\eta^{(1)}$, для которой, очевидно, выполняется условие σ_{μ} : $\eta^{(1)} \to \mu$.
- 3) Если выбранная пара имеет вид (y_l, y_r, y_q) и (y_p, y_r, y_q) , то $\sigma_{\mu}(y_l) = \sigma_{\mu}(y_p)$, поскольку 2-разметка μ является непротиворечивой. Тогда при замене в 2-разметке η всех меток y_p на y_l получается 2-разметка $\eta^{(1)}$, для которой, очевидно, выполняется условие σ_{μ} : $\eta^{(1)} \to \mu$.

Лемма доказана. ■

Следствие 4. Пусть η — произвольная 2-разметка сети Σ . Тогда правильная непротиворечивая 2-разметка $\widetilde{\eta}$, полученная из 2-разметки η устранением противоречий, определена однозначно с точностью до обратимого переобозначения меток.

Доказательство. Пусть $\widetilde{\eta}$ и $\widehat{\eta}$ — две правильные непротиворечивые 2-разметки, полученные из 2-разметки η устранением противоречий. Тогда существуют отображения $\sigma_{\widetilde{\eta}}$ и $\sigma_{\widehat{\eta}}$, удовлетворяющие условиям $\sigma_{\widetilde{\eta}} \colon \eta \to \widetilde{\eta}$ и $\sigma_{\widehat{\eta}} \colon \eta \to \widehat{\eta}$. Согласно лемме 1, отображения $\sigma_{\widetilde{\eta}}$ и $\sigma_{\widehat{\eta}}$ также удовлетворяют условиям $\sigma_{\widetilde{\eta}} \colon \widehat{\eta} \to \widetilde{\eta}$ и $\sigma_{\widehat{\eta}} \colon \widetilde{\eta} \to \widehat{\eta}$, что и доказывает утверждение следствия.

Определение 24. Правильную непротиворечивую 2-разметку η сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ будем называть csofodhoù 2-разметкой cemu Σ c ограничениями, если для любой правильной непротиворечивой 2-разметки μ сети Σ c ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ существует отображение σ_{μ} : $\eta \to \mu$.

Из определения свободной разметки следует, что, при условии существования, свободная 2-разметка сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ определена однозначно с точностью до обратимого переобозначения остальных меток.

Теорема 8. Если сеть Σ допускает нетривиальную правильную непротиворечивую 2-разметку с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$, то существует свободная 2-разметка сети Σ с указанными ограничениями.

Доказательство. Для удобства будем считать, что $\mathbb{N}\setminus\{v_{11},v_{21},\ldots,v_{1n},v_{2n},w_{11},w_{21},\ldots,w_{1n},w_{2n}\}=\{y_{11},y_{21},y_{12},y_{22},\ldots\}$. Пусть свободная 2-разметка $\eta'=(\eta'_1,\eta'_2)$ сети Σ получена в результате свободного продолжения начальной 2-разметки $\eta'_1(x_1^{(0)})=v_{11},\ldots,\eta'_1(x_n^{(0)})=v_{1n}$ и $\eta'_2(x_1^{(0)})=v_{21},\ldots,\eta'_2(x_n^{(0)})=v_{2n}$ с использованием меток $y_{11},y_{21},y_{12},y_{22},\ldots$ Тогда для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} v_{11}&\ldots&v_{1n}\\w_{11}&\ldots&w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21}&\ldots&v_{2n}\\w_{21}&\ldots&w_{2n} \end{pmatrix}$ существует отображение σ_μ , удовлетворяющее условию $\sigma_\mu\colon\eta'\to\mu$. Продолжим указанное отображение σ_μ по правилу $\sigma_\mu(w_{1i})=w_{1i},\,\sigma_\mu(w_{2i})=w_{2i},\,i\in\{1,\ldots,n\}$, и заменим в 2-разметке η' метки $\eta'_1(x_1^{(t)}),\ldots,\eta'_1(x_n^{(t)})$ и $\eta'_2(x_1^{(t)}),\ldots,\eta'_2(x_n^{(t)})$ на w_{11},\ldots,w_{1n} и w_{21},\ldots,w_{2n} соответственно. Таким образом, мы построили 2-разметку η'' сети Σ с ограничениями $\begin{pmatrix} v_{11}&\ldots&v_{1n}\\w_{11}&\ldots&w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21}&\ldots&v_{2n}\\w_{21}&\ldots&w_{2n} \end{pmatrix}$, при этом для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} v_{11}&\ldots&v_{1n}\\w_{11}&\ldots&w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21}&\ldots&v_{2n}\\w_{21}&\ldots&w_{2n} \end{pmatrix}$ существует отображение σ_μ , удовлетворяющее условию $\sigma_\mu\colon\eta''\to\mu$.

Проведём процедуру устранения противоречий в 2-разметке η'' с уточнениями:

- если при устранении противоречия требуется отождествить метки v_{ri} и y_{sj} , то будем заменять метку y_{sj} на v_{ri} ;
- если при устранении противоречия требуется отождествить метки w_{ri} и y_{sj} , то будем заменять метку y_{sj} на w_{ri} .

Пусть η — правильная непротиворечивая 2-разметка сети Σ , полученная из 2-разметки η'' устранением противоречий. Тогда, согласно уточнениям, все метки $\eta_1(x_1^{(0)})$, $\eta_2(x_1^{(0)}), \ldots, \eta_1(x_n^{(0)}), \eta_2(x_n^{(0)}), \eta_1(x_1^{(t)}), \eta_2(x_1^{(t)}), \ldots, \eta_1(x_n^{(t)}), \eta_2(x_n^{(t)})$ содержатся в множестве $\{v_{11}, v_{21}, \ldots, v_{1n}, v_{2n}, w_{11}, w_{21}, \ldots, w_{1n}, w_{2n}\}$. При этом, согласно лемме 1, для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} v_{11} & \ldots & v_{1n} \\ w_{11} & \ldots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \ldots & v_{2n} \\ w_{21} & \ldots & w_{2n} \end{pmatrix}$ соответствующее отображение σ_{μ} удовлетворяет условию σ_{μ} : $\eta \to \mu$.

$$w_{21} \dots w_{2n}$$
) Значит, 2-разметка η является свободной 2-разметкой сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$.

Следующая теорема фактически оправдывает название свободной разметки с ограничениями.

Теорема 9. Пусть имеются свободная 2-разметка η сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$, а также правильная непротиворечивая 2-разметка μ сети Σ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$, при которых возможно определить отображение σ_{μ} по правилу

$$\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}, \ \sigma_{\mu}(w_{1i}) = \bar{w}_{1i}, \ \sigma_{\mu}(v_{2i}) = \bar{v}_{2i}, \ \sigma_{\mu}(w_{2i}) = \bar{w}_{2i}, \ i \in \{1, \dots, n\}.$$

Тогда отображение σ_{μ} допускает такое продолжение, что σ_{μ} : $\eta \to \mu$.

Доказательство. Пусть $\mathbb{N}\setminus\{v_{11},v_{21},\ldots,v_{1n},v_{2n},w_{11},w_{21},\ldots,w_{1n},w_{2n}\}=\{y_{11},y_{21},y_{12},y_{22},\ldots\}$ и свободная 2-разметка $\eta'=(\eta'_1,\eta'_2)$ сети Σ получена в результате свободного продолжения начальной 2-разметки $\eta'_1(x_1^{(0)})=v_{11},\ldots,\,\eta'_1(x_n^{(0)})=v_{1n}$ и

 $\eta_2'(x_1^{(0)})=v_{21},\ldots,\eta_2'(x_n^{(0)})=v_{2n}$ с использованием меток $y_{11},y_{21},y_{12},y_{22},\ldots$ Тогда, согласно теореме 6, для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$, при которых возможно определить отображение σ_{μ} по правилу $\sigma_{\mu}(v_{1i})=\bar{v}_{1i},\ \sigma_{\mu}(v_{2i})=\bar{v}_{2i},\ \sigma_{\mu}(w_{1i})=\bar{w}_{1i},\ \sigma_{\mu}(w_{2i})=\bar{w}_{2i},\ i\in\{1,\dots,n\},$ отображение σ_{μ} продолжается таким образом, что удовлетворяет условию $\sigma_{\mu}\colon \eta'\to \mu$. Заменив в 2-разметке η' метки $\eta_1'(x_1^{(t)}),\dots,\eta_1'(x_n^{(t)})$ и $\eta_2'(x_1^{(t)}),\dots,\eta_2'(x_n^{(t)})$ на w_{11},\dots,w_{1n} и w_{21},\dots,w_{2n} соответственно, получим 2-разметку η'' сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$, при этом для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$, при которых возможно определить отображение σ_{μ} по правилу $\sigma_{\mu}(v_{1i})=\bar{v}_{1i},\ \sigma_{\mu}(v_{2i})=\bar{v}_{2i},\ \sigma_{\mu}(w_{1i})=\bar{w}_{1i},\ \sigma_{\mu}(w_{2i})=\bar{w}_{2i},\ i\in\{1,\dots,n\},\ отображение\ \sigma_{\mu}$ продолжается таким образом, что удовлетворяет условию σ_{μ} : $\eta''\to\mu$.

Проведём процедуру устранения противоречий в 2-разметке η'' с уточнениями:

- если при устранении противоречия требуется отождествить метки v_{ri} и y_{sj} , то будем заменять метку y_{sj} на v_{ri} ;
- если при устранении противоречия требуется отождествить метки w_{ri} и y_{sj} , то будем заменять метку y_{sj} на w_{ri} .

В доказательстве теоремы 8 показано, что правильная непротиворечивая 2-разметка сети Σ , полученная из 2-разметки η'' устранением противоречий, является свободной 2-разметкой сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$. Не ограничивая общности, можно считать, что при устранении противоречий в разметке η'' получается свободная разметка η . Поскольку для любой правильной непротиворечивой разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$, при которых возможно определить отображение σ_{μ} по правилу $\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}$, $\sigma_{\mu}(v_{2i}) = \bar{v}_{2i}$, $\sigma_{\mu}(w_{1i}) = \bar{w}_{1i}$, $\sigma_{\mu}(w_{2i}) = \bar{w}_{2i}$, $i \in \{1,\dots,n\}$, отображение σ_{μ} допускает продолжение, удовлетворяющее условию σ_{μ} : $\eta'' \to \mu$, то, согласно лемме 1, данное продолжение также удовлетворяет условию σ_{μ} : $\eta \to \mu$.

Следствие 5. В условиях теоремы 9 если G и F — минимальные правила разметок η и μ соответственно, то при всех допустимых $z_i, z_j \in \mathbb{N}$ выполняется равенство $\sigma_{\mu}(G(z_i, z_j)) = F(\sigma_{\mu}(z_i), \sigma_{\mu}(z_j)).$

Достаточным условием для существования правильных непротиворечивых 2-разметок сети Σ при всех возможных ограничениях из $\mathbb N$ является существование правильных непротиворечивых 2-разметок сети Σ при всех возможных ограничениях из Ω_{4n} . Однако, как и в случае с простыми разметками, справедливо более сильное утверждение.

Теорема 10. Сеть Σ допускает нетривиальные правильные непротиворечивые 2-разметки при всех возможных ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ из $\mathbb N$ в том и только в том случае, когда сеть Σ допускает нетривиальные правильные

непротиворечивые 2-разметки при всех возможных ограничениях $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$ из Ω_3 .

Доказательство. Необходимость очевидна, докажем достаточность. Пусть $\mathbb{N}\backslash\{v_{11},v_{21},\ldots,v_{1n},v_{2n},w_{11},w_{21},\ldots,w_{1n},w_{2n}\}=\{y_{11},y_{21},y_{12},y_{22},\ldots\}$ и свободная 2-разметка $\eta'=(\eta'_1,\eta'_2)$ сети Σ получена в результате свободного продолжения начальной 2-разметки $\eta'_1(x_1^{(0)})=v_{11},\ldots,\eta'_1(x_n^{(0)})=v_{1n}$ и $\eta'_2(x_1^{(0)})=v_{21},\ldots,\eta'_2(x_n^{(0)})=v_{2n}$ с использованием меток $y_{11},y_{21},y_{12},y_{22},\ldots$ Тогда, согласно теореме 6, для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11}&\ldots&\bar{v}_{1n}\\\bar{w}_{11}&\ldots&\bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21}&\ldots&\bar{v}_{2n}\\\bar{w}_{21}&\ldots&\bar{w}_{2n} \end{pmatrix}$ из Ω_3 , при которых возможно определить отображение σ_μ по правилу $\sigma_\mu(v_{1i})=\bar{v}_{1i}$, $\sigma_\mu(v_{2i})=\bar{v}_{2i},\ \sigma_\mu(w_{1i})=\bar{w}_{1i},\ \sigma_\mu(w_{2i})=\bar{w}_{2i},\ i\in\{1,\ldots,n\}$, отображение σ_μ продолжается таким образом, что удовлетворяет условию $\sigma_\mu\colon\eta'\to\mu$. Заменив в 2-разметке η' метки $\eta'_1(x_1^{(t)}),\ldots,\eta'_1(x_n^{(t)})$ и $\eta'_2(x_1^{(t)}),\ldots,\eta'_2(x_n^{(t)})$ на w_{11},\ldots,w_{1n} и w_{21},\ldots,w_{2n} соответственно, получим 2-разметку η'' сети Σ с ограничениями $\begin{pmatrix} v_{11}&\ldots&v_{1n}\\w_{11}&\ldots&v_{1n}\end{pmatrix}$ и $\begin{pmatrix} v_{21}&\ldots&v_{2n}\\w_{21}&\ldots&v_{2n}\end{pmatrix}$, при этом для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11}&\ldots&\bar{v}_{1n}\\w_{21}&\ldots&\bar{v}_{2n}\end{pmatrix}$, при отом для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11}&\ldots&\bar{v}_{1n}\\w_{21}&\ldots&\bar{v}_{2n}\end{pmatrix}$, при которых возможно определить отображение σ_μ по правилу $\sigma_\mu(v_{1i})=\bar{v}_{1i},\sigma_\mu(v_{2i})=\bar{v}_{2i},\sigma_\mu(w_{1i})=\bar{w}_{1i},\sigma_\mu(w_{2i})=\bar{w}_{2i},$ $i\in\{1,\ldots,n\}$, отображение σ_μ по правилу $\sigma_\mu(v_{1i})=\bar{v}_{1i},\sigma_\mu(v_{2i})=\bar{v}_{2i},\sigma_\mu(w_{1i})=\bar{w}_{1i},\sigma_\mu(w_{2i})=\bar{w}_{2i},$ $i\in\{1,\ldots,n\}$, отображение σ_μ продолжается таким образом, что удовлетворяет условию $\sigma_\mu\colon\eta''\to\mu$.

Проведём процедуру устранения противоречий в 2-разметке η'' с уточнениями:

- если при устранении противоречия требуется отождествить метки v_{ri} и y_{sj} , то будем заменять метку y_{sj} на v_{ri} ;
- если при устранении противоречия требуется отождествить метки w_{ri} и y_{sj} , то будем заменять метку y_{sj} на w_{ri} .

Пусть η —правильная непротиворечивая 2-разметка сети Σ , полученная из 2-разметки η'' устранением противоречий. Тогда, согласно сделанным уточнениям, все метки $\eta_1(x_1^{(0)}), \eta_2(x_1^{(0)}), \dots, \eta_1(x_n^{(0)}), \eta_2(x_n^{(0)}), \eta_1(x_1^{(t)}), \eta_2(x_1^{(t)}), \dots, \eta_1(x_n^{(t)}), \eta_2(x_n^{(t)})$ содержатся в множестве $\{v_{11}, v_{21}, \dots, v_{1n}, v_{2n}, w_{11}, w_{21}, \dots, w_{1n}, w_{2n}\}$. При этом, согласно лемме 1, для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$ из Ω_3 , при которых возможно определить отображение σ_{μ} по правилу $\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}$, $\sigma_{\mu}(v_{2i}) = \bar{v}_{2i}$, $\sigma_{\mu}(w_{1i}) = \bar{w}_{1i}$, $\sigma_{\mu}(w_{2i}) = \bar{w}_{2i}$, $i \in \{1, \dots, n\}$, отображение σ_{μ} продолжается таким образом, что удовлетворяет условию σ_{μ} : $\eta \to \mu$.

Методом от противного покажем, что правильная непротиворечивая 2-разметка η является 2-разметкой с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$. Согласно уточнениям, в разметке η могли появиться противоречия только следующих типов:

$$- \eta_r(x_i^{(0)}) = v_{sj} \neq v_{ri};$$

$$- \eta_r(x_i^{(0)}) = w_{sj} \neq v_{ri};$$

$$- \eta_r(x_i^{(t)}) = v_{sj} \neq w_{ri};$$

$$- \eta_r(x_i^{(t)}) = w_{sj} \neq w_{ri}.$$

Разберём подслучай $\eta_1(x_i^{(0)}) = v_{1j} \neq v_{1i}$, относящийся к первому типу противоречий. Не ограничивая общности, будем считать, что ограничения $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ не содержат элементов из Ω_3 . Поскольку $(v_{11}, \dots, v_{1n}) \neq (v_{21}, \dots, v_{2n})$ и $(w_{11}, \dots, w_{1n}) \neq (w_{21}, \dots, w_{2n})$, то существуют такие $i_1, i_2 \in \{1 \dots, n\}$, что $v_{1i_1} \neq v_{2i_1}$ и $w_{1i_2} \neq w_{2i_2}$. Заменим в ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ все вхождения элемента v_{1i} на 1 и все вхождения элемента v_{1j} на 2. Полученные ограничения будем обозначать $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$. Нетрудно понять, что $v'_{1i_1} \neq v'_{2i_1}$ и $w'_{1i_2} \neq w'_{2i_2}$, и, не ограничивая общности, достаточно рассмотреть следующие вари-

- 1) если $v'_{1i_1}, v'_{2i_1}, w'_{1i_2} \in \Omega_2$ и $w'_{2i_2} \notin \Omega_2$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элемента w'_{2i_2} на $(3-w'_{1i_2});$
- 2) если $v'_{1i_1}, v'_{2i_1} \in \Omega_2$ и $w'_{1i_2}, w'_{2i_2} \notin \Omega_2$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элемента w'_{1i_2} на 1, все вхождения w'_{2i_2} на 2;
- $w_{21} \cdots w_{2n}$ 3) если $v'_{1i_1}, w'_{1i_2} \in \Omega_2$ и $v'_{2i_1} = w'_{2i_2} \notin \Omega_2$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элементов v'_{2i_1} и w'_{2i_2} на 3; 4) если $v'_{1i_1}, w'_{1i_2} \in \Omega_2$ и $v'_{2i_1}, w'_{2i_2} \notin \Omega_2$, $v'_{2i_1} \neq w'_{2i_2}$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элементов v'_{2i_1} на $(3 v'_{1i_1})$ и все вхождения элементов v'_{2i_1} на $(3 v'_{1i_1})$ и
- все вхождения элементов w'_{2i_2} на $(3-w'_{1i_2});$ 5) если $v'_{1i_1}, w'_{2i_2} \in \Omega_2$ и $v'_{2i_1} = w'_{1i_2} \notin \Omega_2$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элементов v'_{2i_1} и w'_{1i_2} на 3;6) если $v'_{1i_1}, w'_{2i_2} \in \Omega_2$ и $v'_{2i_1}, w'_{1i_2} \notin \Omega_2$, $v'_{2i_1} \neq w'_{1i_2}$, то заменим в ограничениях
- $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элементов v'_{2i_1} на $(3-v'_{1i_1})$ и все вхождения элементов w'_{1i_2} на $(3-w'_{2i_2})$;
- 7) если $v'_{1i_1} \in \Omega_2$ и $v'_{2i_1}, w'_{1i_2}, w'_{2i_2} \notin \Omega_2$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элемента v'_{2i_1} на $(3-v'_{1i_1})$, после чего всё аналогично первому или второму варианту;
- 8) если $v'_{1i_1}, v'_{2i_1}, w'_{1i_2}, w'_{2i_2} \notin \Omega_2$, то заменим в ограничениях $\begin{pmatrix} v'_{11} & \dots & v'_{1n} \\ w'_{11} & \dots & w'_{1n} \end{pmatrix}$ и $\begin{pmatrix} v'_{21} & \dots & v'_{2n} \\ w'_{21} & \dots & w'_{2n} \end{pmatrix}$ все вхождения элемента v'_{1i_1} на 1, а все вхождения элемента v'_{2i_1} е чего всё аналогично первому или второму варианту.

При $v_{1i_1}',v_{2i_1}',w_{1i_2}',w_{2i_2}'\in\Omega_2$, а также в заключение случаев 1, 2, 4, 6, 7, 8 следует заменить в имеющихся ограничениях все элементы, отличные от 1 и 2, на 1, а в заключение случаев 3, 5—все элементы, отличные от 1, 2 и 3, на 1. В результате будут получены ограничения $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$ из Ω_3 . Согласно условию теоремы, существует правильная непротиворечивая 2-разметка μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \dots & \bar{v}_{2n} \\ \bar{w}_{21} & \dots & \bar{w}_{2n} \end{pmatrix}$ из Ω_3 , при этом отображение σ_{μ} , определённое по правилу $\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}, \, \sigma_{\mu}(v_{2i}) = \bar{v}_{2i}, \, \sigma_{\mu}(w_{1i}) = \bar{w}_{1i}, \, \sigma_{\mu}(w_{2i}) = \bar{w}_{2i}, \, i \in \{1,\dots,n\}$, продолжается таким образом, что удовлетворяет условию $\sigma_{\mu} \colon \eta \to \mu$. Получили противоречие, поскольку $\sigma_{\mu}(\eta_1(x_i^{(0)})) = \sigma_{\mu}(v_{1j}) = 2 \neq 1 = \bar{v}_{1i} = \mu(x_i^{(0)})$. Отсутствие противоречий всех остальных типов устанавливается аналогичным образом. \blacksquare

Замечание 4. Интересным представляется вопрос о том, останется ли верным утверждение теоремы 10, если в нём заменить множество Ω_3 на Ω_2 . Нетрудно видеть, что имеющееся доказательство теоремы 10 существенным образом использует условие $|\Omega| \geqslant 3$. Так, согласно доказательству теоремы 10, если Σ — биективная сеть ширины 2, то существование правильных непротиворечивых разметок сети Σ при всех возможных ограничениях $\begin{pmatrix} \bar{v}_{11} & \bar{v}_{12} \\ \bar{w}_{11} & \bar{w}_{12} \end{pmatrix}$ и $\begin{pmatrix} \bar{v}_{21} & \bar{v}_{22} \\ \bar{w}_{21} & \bar{w}_{22} \end{pmatrix}$ из Ω_2 не может гарантировать существование

правильной непротиворечивой разметки сети Σ с ограничениями $\begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$ и $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$.

В дальнейшем нам потребуются естественные обобщения понятия свободной 2-разметки с ограничениями.

Определение 25. Правильную непротиворечивую 2-разметку η сети Σ будем называть *свободной 2-разметкой сети* Σ *с условиями*

$$\eta_1(x_1^{(0)}) = v_{11}, \dots, \ \eta_1(x_n^{(0)}) = v_{1n}, \quad \eta_2(x_1^{(0)}) = v_{21}, \dots, \ \eta_2(x_n^{(0)}) = v_{2n},
\eta_1(x_{i_1}^{(t)}) = w_{1i_1}, \dots, \ \eta_1(x_{i_k}^{(t)}) = w_{1i_k}, \quad \eta_2(x_{i_1}^{(t)}) = w_{2i_1}, \dots, \ \eta_2(x_{i_l}^{(t)}) = w_{2i_l}, \end{aligned}$$

если для любой правильной непротиворечивой 2-разметки μ сети Σ с аналогичными условиями

$$\mu_1(x_1^{(0)}) = v_{11}, \dots, \ \mu_1(x_n^{(0)}) = v_{1n}, \quad \mu_2(x_1^{(0)}) = v_{21}, \dots, \ \mu_2(x_n^{(0)}) = v_{2n},$$

$$\mu_1(x_{i_1}^{(t)}) = w_{1i_1}, \dots, \ \mu_1(x_{i_k}^{(t)}) = w_{1i_k}, \quad \mu_2(x_{j_1}^{(t)}) = w_{2j_1}, \dots, \ \mu_2(x_{j_l}^{(t)}) = w_{2j_l}$$

существует такое отображение σ_{μ} , что σ_{μ} : $\eta \to \mu$.

Теорема 11. Если существует правильная непротиворечивая 2-разметка μ сети Σ с условиями

$$\mu_1(x_1^{(0)}) = v_{11}, \ldots, \ \mu_1(x_n^{(0)}) = v_{1n}, \quad \mu_2(x_1^{(0)}) = v_{21}, \ldots, \ \mu_2(x_n^{(0)}) = v_{2n},$$
 $\mu_1(x_{i_1}^{(t)}) = w_{1i_1}, \ldots, \ \mu_1(x_{i_k}^{(t)}) = w_{1i_k}, \quad \mu_2(x_{j_1}^{(t)}) = w_{2j_1}, \ldots, \ \mu_2(x_{j_l}^{(t)}) = w_{2j_l},$

то существует единственная, с точностью до переобозначений, свободная разметка η сети Σ с теми же условиями.

Теорема 12. Пусть для свободной 2-разметки η с условиями

$$\eta_1(x_1^{(0)}) = v_{11}, \; \ldots, \; \eta_1(x_n^{(0)}) = v_{1n}, \; \; \; \eta_2(x_1^{(0)}) = v_{21}, \; \ldots, \; \eta_2(x_n^{(0)}) = v_{2n}, \ \eta_1(x_{i_1}^{(t)}) = w_{1i_1}, \; \ldots, \; \eta_1(x_{i_k}^{(t)}) = w_{1i_k}, \; \; \; \eta_2(x_{j_1}^{(t)}) = w_{2j_1}, \; \ldots, \; \eta_2(x_{j_l}^{(t)}) = w_{2j_l}$$

и правильной непротиворечивой разметки μ с условиями

$$\mu_1(x_1^{(0)}) = \bar{v}_{11}, \ldots, \ \mu_1(x_n^{(0)}) = \bar{v}_{1n}, \ \mu_2(x_1^{(0)}) = \bar{v}_{21}, \ldots, \ \mu_2(x_n^{(0)}) = \bar{v}_{2n}, \ \mu_1(x_{i_1}^{(t)}) = \bar{w}_{1i_1}, \ldots, \ \mu_1(x_{i_k}^{(t)}) = \bar{w}_{1i_k}, \ \mu_2(x_{j_1}^{(t)}) = \bar{w}_{2j_1}, \ldots, \ \mu_2(x_{j_l}^{(t)}) = \bar{w}_{2j_l}$$

возможно определить отображение σ_{μ} по правилу $\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}$, $\sigma_{\mu}(v_{2i}) = \bar{v}_{2i}$, $\sigma_{\mu}(w_{1i_s}) = \bar{w}_{1i_s}$, $\sigma_{\mu}(w_{2j_t}) = \bar{w}_{2j_t}$. Тогда отображение σ_{μ} допускает продолжение, удовлетворяющее условию $\sigma_{\mu} : \eta \to \mu$.

Следствие 6. В условиях теоремы 12, если G и F — минимальные правила 2-разметок η и μ соответственно, то при всех допустимых $z_i, z_j \in \mathbb{N}$ выполняется равенство $\sigma_{\mu}(G(z_i, z_j)) = F(\sigma_{\mu}(z_i), \sigma_{\mu}(z_j))$. В частности, если метка $\mu_r(x_i^{(s)})$ не содержится в области определения F, то метка $\eta_r(x_i^{(s)})$ не содержится в области определения G.

3. Построение 2-транзитивных сетей

Приведём алгоритм 1 модификации произвольной биективной сети Σ до биективной сети $\widehat{\Sigma}$, которая является 2-транзитивной для всех достаточно больших множеств.

Алгоритм 1. Построение 2-транзитивной сети

Вход: произвольная биективная сеть $\Sigma = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1k_1}) \cdot \ldots \cdot (\Sigma_{n1} \cdot \ldots \cdot \Sigma_{nk_n}).$

1: Для всех $s = 1, 2, \ldots, n-1$:

Пусть первые (s-1) слоев канонического представления сети Σ уже модифицированы, $\widehat{\Sigma}_{s-1}=(\Sigma_{11}\cdot\ldots\cdot\Sigma_{1\widehat{k}_1})\cdot\ldots\cdot(\Sigma_{(s-1)1}\cdot\ldots\cdot\Sigma_{(s-1)\widehat{k}_{s-1}}),\ \mu$ — свободная разметка сети $\widehat{\Sigma}_{s-1}$ с условиями $\mu(x_1^{(0)})=v_1,\ldots,\mu(x_n^{(0)})=v_1,\mu(x_1^{(\widehat{k}_1)})=v_1,\ldots,\mu(x_{s-1}^{(\widehat{k}_1+\ldots+\widehat{k}_{s-1})})=v_1.$ Продолжим разметку μ сети $\widehat{\Sigma}_{s-1}$ свободным образом до разметки сети $\widehat{\Sigma}_s'=(\Sigma_{11}\cdot\ldots\cdot\Sigma_{1\widehat{k}_1})\cdot\ldots\cdot(\Sigma_{(s-1)1}\cdot\ldots\cdot\Sigma_{(s-1)\widehat{k}_{s-1}})\cdot(\Sigma_{s1}\cdot\ldots\cdot\Sigma_{sk_s})$ и выберем такую вершину $x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{s-1}+k_s)},$ метка которой $\mu(x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{s-1}+k_s)})$ не содержится в области определения $F_{\widehat{\Sigma}_s'}$ —минимального правила разметки μ сети $\widehat{\Sigma}_s'$.

- 2: Если $s \leq n-2$ и j=s, то
- 3: выберем произвольные $l,m \in \{s+1,\ldots,n\},\ l \neq m,$ и модифицируем s-й слой $\Sigma_{s1}\cdot\ldots\cdot\Sigma_{sk_s}$ следующим образом: $\Sigma_{s1}\cdot\ldots\cdot\Sigma_{s\hat{k}_s}=\Sigma_{s1}\cdot\ldots\cdot\Sigma_{sk_s}\cdot\Sigma_{l}^{(s,l)}\cdot\Sigma_{s}^{(s,l)}\cdot\Sigma_{m}^{(l,m)}.$
- 4: Если $s \le n-2$ и $j \ne s$, то
- 5: выберем произвольный $m \in \{s+1, \ldots, n\}, \ m \neq j, \$ и модифицируем s-й слой $\Sigma_{s1} \cdot \ldots \cdot \Sigma_{sk_s}$ следующим образом: $\Sigma_{s1} \cdot \ldots \cdot \Sigma_{s\hat{k}_s} = \Sigma_{s1} \cdot \ldots \cdot \Sigma_{sk_s} \cdot \Sigma_{s}^{(s,j)} \cdot \Sigma_{m}^{(s,m)} \cdot \Sigma_{s}^{(j,s)}$.
- 6: Если s = n 1 и j = n 1, то
- 7: модифицируем (n-1)-й слой $\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)k_{n-1}}$ следующим образом:

$$\Sigma_{(n-1)1} \cdots \Sigma_{(n-1)\widehat{k}_{n-1}} = \Sigma_{(n-1)1} \cdots \Sigma_{(n-1)k_{n-1}} \cdot (\Sigma_n^{(n-1,n)} \cdot \Sigma_{n-1}^{(n-1,n)}) \cdot (\Sigma_n^{(n,n-1)} \cdots \Sigma_n^{(n,1)}).$$

- 8: Если s = n 1 и j = n, то
- 9: модифицируем (n-1)-й слой $\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)k_{n-1}}$ следующим образом:

$$\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)\widehat{k}_{n-1}} = \Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)k_{n-1}} \cdot (\Sigma_{n-1}^{(n,n-1)} \cdot \Sigma_n^{(n,n-1)}) \cdot (\Sigma_{n-1}^{(n-1,n)} \cdot \ldots \cdot \Sigma_{n-1}^{(n-1,1)}).$$

Выход: $(\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)\widehat{k}_{n-1}})$ — «почти» каноническое представление биективной сети $\widehat{\Sigma}$, сложность которой не превосходит $\|\Sigma\| + 6n - 7$.

Не ограничивая общности, всюду далее будем считать, что произвольная биективная сеть Σ совпадает со своим каноническим представлением

$$(\Sigma_{11} \cdot \ldots \cdot \Sigma_{1k_1}) \cdot \ldots \cdot (\Sigma_{n1} \cdot \ldots \cdot \Sigma_{nk_n})$$

с множеством вершин $X_0 \cup X_{11} \cup \ldots \cup X_{1k_1} \cup \ldots \cup X_{n1} \cup \ldots \cup X_{nk_n}$ и что первый слой имеет вид $\Sigma_{11} \cdot \ldots \cdot \Sigma_{1k_1} = \Sigma_{11} \cdot \ldots \cdot \Sigma_{1l} \cdot \Sigma_2^{(1,2)} \cdot \ldots \cdot \Sigma_n^{(n-1,n)} \cdot \Sigma_{n-1}^{(n-1,n)} \cdot \ldots \cdot \Sigma_1^{(1,2)}$, в противном случае приведём его к такому виду, добавив не более 2(n-1) соответствующих элементарных сетей.

Теорема 13. Пусть Σ — произвольная биективная сеть ширины n. Тогда её модификация Σ является 2-транзитивной для любого множества Ω , мощность которого больше чем $2\|\Sigma\| + 14n - 14$.

Доказательство. Всюду далее будем полагать, что каждая свободная 2-разметка получена при помощи параллельного свободного продолжения соответствующих начальных условий с использованием пары множеств $Y_1 = \{y_{11}, y_{12}, \ldots\}$ и $Y_2 = \{y_{21}, y_{22}, \ldots\}$. Описание корректности действий, выполняемых на шагах 0 и 1, сформулируем в виде следующей леммы.

Лемма 2. Для любой свободной 2-разметки $\eta = (\eta_1, \eta_2)$ сети

$$\widehat{\Sigma}_1' = \Sigma_{11} \cdot \ldots \cdot \Sigma_{1l} \cdot \Sigma_2^{(1,2)} \cdot \ldots \cdot \Sigma_n^{(n-1,n)} \cdot \Sigma_{n-1}^{(n-1,n)} \cdot \ldots \cdot \Sigma_1^{(1,2)}$$

с начальными условиями $(v_{11},\ldots,v_{1n})\neq (v_{21},\ldots,v_{2n})$ справедливо, что

- $\eta_1(x_1^{(k_1)}),\ldots,\eta_1(x_n^{(k_1)})\in Y_1$ и $\eta_2(x_1^{(k_1)}),\ldots,\eta_2(x_n^{(k_1)})\in Y_2;$ метки $\eta_1(x_1^{(k_1)})$ и $\eta_2(x_1^{(k_1)})$ (и только они), независимо от условий (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) , не содержатся в области определения $G_{\widehat{\Sigma}_1'}$ — минимального правила 2-разметки η .

Доказательство. Введём понятие уровня метки в свободной 2-разметке η произвольной сети $\Sigma = \Sigma_1 \cdot \ldots \cdot \Sigma_t$. Для меток $\eta_1(x_1^{(0)}), \ldots, \eta_1(x_n^{(0)}); \eta_2(x_1^{(0)}), \ldots, \eta_2(x_n^{(0)})$ уровень $h(\eta_*(x_i^{(0)}))$ полагаем равным нулю. Если метка z_s удовлетворяет соотношению $G_{\Sigma}(z_l,z_r)=z_s$ для минимального правила G_{Σ} 2-разметки η сети Σ , то полагаем $h(z_s) = \max\{h(z_l), h(z_r)\} + 1$. Такое определение корректно, поскольку минимальное правило G_{Σ} свободной 2-разметки η удовлетворяет условию

$$(G_{\Sigma,\eta}(z_1,z_2)=G_{\Sigma,\eta}(z_3,z_4))\Longrightarrow ((z_1,z_2)=(z_3,z_4))$$

при всех допустимых $z_1, z_2, z_3, z_4 \in \mathbb{N}$.

Индукцией по длине произведения элементарных сетей $\Sigma_1 \cdot \ldots \cdot \Sigma_t$ нетрудно показать, что для любой вершины $x_i^{(s)}$ сети Σ уровни меток $\eta_1(x_i^{(s)})$ и $\eta_2(x_i^{(s)})$ совпадают.

Пусть η — свободная 2-разметка сети

$$\Sigma_{11} \cdot \ldots \cdot \Sigma_{1l} \cdot \Sigma_2^{(1,2)} \cdot \ldots \cdot \Sigma_n^{(n-1,n)},$$

полученная в результате параллельного свободного продолжения начальных условий $(v_{11},\ldots,v_{1n}) \neq (v_{21},\ldots,v_{2n})$ с использованием пары множеств $Y_1 = \{y_{11},y_{12},\ldots\}$ и $Y_2=\{y_{21},y_{22},\ldots\}$. Тогда в 2-разметке η ровно две метки имеют максимальный уровень — это $\eta_1(x_n^{(l+n-1)})$ и $\eta_2(x_n^{(l+n-1)})$. Из максимальности уровня следует, что обе метки $\eta_1(x_n^{(l+n-1)})$ и $\eta_2(x_n^{(l+n-1)})$ не содержатся в области определения минимального правила 2-разметки η .

Соотношение $\eta_1(x_n^{(l+n-1)}) \in Y_1$ выполняется по построению. Предположим, что $\eta_2(x_n^{(l+n-1)}) \in Y_1$. Тогда, согласно построению, метка $\eta_2(x_n^{(l+n-1)})$ впервые появилась в разметке η_1 и, следовательно, в силу максимальности её уровня, должна совпадать единственно с $\eta_1(x_n^{(l+n-1)})$. Но в таком случае, пользуясь конструктивной особенностью свободной 2-разметки, нетрудно показать совпадение $\eta_1(x_1^{(l)}) = \eta_2(x_1^{(l)}), \ldots, \eta_1(x_n^{(l)}) = \eta_2(x_n^{(l)})$, которое противоречит начальному условию $(v_{11}, \ldots, v_{1n}) \neq (v_{21}, \ldots, v_{2n})$. Таким образом, $\eta_2(x_n^{(l+n-1)}) \in Y_2$.

Ввиду того, что обе метки $\eta_1(x_n^{(l+n-1)})$ и $\eta_2(x_n^{(l+n-1)})$ не содержатся в области определения минимального правила 2-разметки η , при продолжении свободной 2-разметки η свободным образом (с использованием пары множеств $Y_1 = \{y_{11}, y_{12}, \ldots\}$ и $Y_2 = \{y_{21}, y_{22}, \ldots\}$) до свободной разметки сети

$$\widehat{\Sigma}_1' = \Sigma_{11} \cdot \ldots \cdot \Sigma_{1l} \cdot \Sigma_2^{(1,2)} \cdot \ldots \cdot \Sigma_n^{(n-1,n)} \cdot \Sigma_{n-1}^{(n-1,n)} \cdot \ldots \cdot \Sigma_1^{(1,2)}$$

будут выполнены следующие условия:

- $\eta_1(x_1^{(k_1)}),\ldots,\eta_1(x_n^{(k_1)})\in Y_1$ и $\eta_2(x_1^{(k_1)}),\ldots,\eta_2(x_n^{(k_1)})\in Y_2;$
- метки $\eta_1(x_1^{(k_1)})$ и $\eta_2(x_1^{(k_1)})$ (и только они), независимо от условий (v_{11},\ldots,v_{1n}) и (v_{21},\ldots,v_{2n}) , не содержатся в области определения $G_{\widehat{\Sigma}_1'}$ минимального правила 2-разметки η .

Лемма доказана. ■

Ввиду леммы 2, для свободной разметки μ сети $\widehat{\Sigma}'_1 = \Sigma_{11} \cdot \ldots \cdot \Sigma_{1k_1}$ с начальным условием (v_1, \ldots, v_1) метка $\mu(x_1^{(k_1)})$ (и только она) не содержится в области определения $F_{\widehat{\Sigma}'_1}$ — минимального правила разметки μ и при модификации слоя $\widehat{\Sigma}'_1 = \Sigma_{11} \cdot \ldots \cdot \Sigma_{1k_1}$ до сети $\widehat{\Sigma}_1 = \Sigma_{11} \cdot \ldots \cdot \Sigma_{1k_1} \cdot \Sigma_1^{(1,l)} \cdot \Sigma_1^{(1,l)} \cdot \Sigma_m^{(l,m)}$; свободная 2-разметка η сети $\widehat{\Sigma}'_1$ с начальными условиями (v_{11}, \ldots, v_{1n}) и (v_{21}, \ldots, v_{2n}) свободным образом продолжается до свободной 2-разметки η сети $\widehat{\Sigma}_1$ с любыми условиями $\eta_1(x_1^{(k_1)}) = w_{11}$ и $\eta_2(x_1^{(k_1)}) = w_{21}$, при этом:

- $\eta_1(x_2^{(\widehat{k}_1)}),\ldots,\eta_1(x_n^{(\widehat{k}_1)})\in Y_1$ и $\eta_2(x_2^{(\widehat{k}_1)}),\ldots,\eta_2(x_n^{(\widehat{k}_1)})\in Y_2;$
- метки $\eta_1(x_m^{(\widehat{k}_1)})$ и $\eta_2(x_m^{(\widehat{k}_1)})$, независимо от условий $\eta_1(x_1^{(\widehat{k}_1)})=w_{11}$ и $\eta_2(x_1^{(\widehat{k}_1)})=w_{21}$, не содержатся в области определения $G_{\widehat{\Sigma}_1}$ —минимального правила 2-разметки η сети $\widehat{\Sigma}_1$.

Докажем корректность действий, выполняемых на шаге с номером $s \in \{2, \ldots, n-2\}$. Пусть первые (s-1) слоёв канонического представления сети Σ уже модифицированы таким образом, что сеть

$$\widehat{\Sigma}_{s-1} = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(s-1)1} \cdot \ldots \cdot \Sigma_{(s-1)\widehat{k}_{s-1}})$$

допускает свободную 2-разметку $\eta = (\eta_1, \eta_2)$ при любых условиях

$$\eta_1(x_1^{(0)}) = v_{11}, \dots, \eta_1(x_n^{(0)}) = v_{1n}, \eta_1(x_1^{(\widehat{k}_1)}) = w_{11}, \dots, \eta_1(x_{s-1}^{(\widehat{k}_1 + \dots + \widehat{k}_{s-1})}) = w_{1s-1}, (2)$$

$$\eta_2(x_1^{(0)}) = v_{21}, \dots, \ \eta_2(x_n^{(0)}) = v_{2n}, \ \eta_2(x_1^{(\widehat{k}_1)}) = w_{21}, \dots, \ \eta_2(x_{s-1}^{(\widehat{k}_1 + \dots + \widehat{k}_{s-1})}) = w_{2s-1},$$
(3)

при этом:

 $- \eta_1(x_s^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}),\ldots,\eta_1(x_n^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}) \in Y_1 \text{ и } \eta_2(x_s^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}),\ldots,\eta_2(x_n^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}) \in Y_2;$ $- \text{ среди } x_s^{(\hat{k}_1+\ldots+\hat{k}_{s-1})},\ldots,x_n^{(\hat{k}_1+\ldots+\hat{k}_{s-1})} \text{ существует вершина } x_i^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}, \text{ метки которой }$ $\eta_1(x_i^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}) \text{ и } \eta_2(x_i^{(\hat{k}_1+\ldots+\hat{k}_{s-1})}), \text{ независимо от условий } (2) \text{ и } (3), \text{ не содержатся }$ в области определения $G_{\widehat{\Sigma}_{s-1}}$ — минимального правила 2-разметки η сети $\widehat{\Sigma}_{s-1}$.

Тогда для свободной разметки μ сети $\widehat{\Sigma}_{s-1}$ с условиями

$$\mu(x_1^{(0)}) = v_1, \ldots, \ \mu(x_n^{(0)}) = v_1, \ \mu(x_1^{(\widehat{k}_1)}) = v_1, \ldots, \ \mu(x_{s-1}^{(\widehat{k}_1 + \ldots + \widehat{k}_{s-1})}) = v_1$$

метка $\mu(x_i^{(\hat{k}_1+\ldots+\hat{k}_{s-1})})$ также не содержится в области определения минимального правила $F_{\widehat{\Sigma}_{s-1}}$ и при продолжении разметки μ сети $\widehat{\Sigma}_{s-1}$ свободным образом до разметки

$$\widehat{\Sigma}_s' = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(s-1)1} \cdot \ldots \cdot \Sigma_{(s-1)\widehat{k}_{s-1}}) \cdot (\Sigma_{s1} \cdot \ldots \cdot \Sigma_{sk_s}),$$

согласно лемме 5 из [1], среди вершин $x_s^{(\hat{k}_1+\ldots+\hat{k}_{s-1}+k_s)},\ldots,x_n^{(\hat{k}_1+\ldots+\hat{k}_{s-1}+k_s)}$ существует такая вершина $x_j^{(\hat{k}_1+\ldots+\hat{k}_{s-1}+k_s)}$, что метка $\mu(x_j^{(\hat{k}_1+\ldots+\hat{k}_{s-1}+k_s)})$ не содержится в области определения $F_{\widehat{\Sigma}'_s}$ — минимального правила разметки μ сети $\widehat{\Sigma}'_s$.

Поскольку разметка μ по построению является свободной разметкой сети $\widehat{\Sigma}_s'$ с условиями

$$\mu(x_1^{(0)}) = v_1, \ldots, \ \mu(x_n^{(0)}) = v_1, \ \mu(x_1^{(\widehat{k}_1)}) = v_1, \ldots, \ \mu(x_{s-1}^{(\widehat{k}_1 + \ldots + \widehat{k}_{s-1})}) = v_1,$$

то, согласно следствию 12 из [1], для продолжения свободной 2-разметки η сети $\widehat{\Sigma}'_s$ с условиями (2) и (3) выполнены следующие условия:

- $\eta_1(x_s^{(\hat{k}_1 + \dots + \hat{k}_{s-1} + k_s)}), \dots, \eta_1(x_n^{(\hat{k}_1 + \dots + \hat{k}_{s-1} + k_s)}) \in Y_1;$ $\eta_2(x_s^{(\hat{k}_1 + \dots + \hat{k}_{s-1} + k_s)}), \dots, \eta_2(x_n^{(\hat{k}_1 + \dots + \hat{k}_{s-1} + k_s)}) \in Y_2;$
- метки $\eta_1(x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{s-1}+k_s)})$ и $\eta_2(x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{s-1}+k_s)})$, независимо от условий (2) и (3), не содержатся в области определения $G_{\widehat{\Sigma}'}$ — минимального правила 2-разметки η сети $\widehat{\Sigma}'_{e}$.

В каждом из возможных вариантов модификации сети $\widehat{\Sigma}_s'$ свободная 2-разметка η сети $\widehat{\Sigma}'_s$ с условиями (2) и (3) свободным образом продолжается до свободной 2-разметки η сети

$$\widehat{\Sigma}_s = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(s-1)1} \cdot \ldots \cdot \Sigma_{(s-1)\widehat{k}_{s-1}}) \cdot (\Sigma_{s1} \cdot \ldots \cdot \Sigma_{s\widehat{k}_s})$$

с любыми условиями $\eta_1(x_s^{(\hat{k}_1+\ldots+\hat{k}_s)})=w_{1s}$ и $\eta_2(x_s^{(\hat{k}_1+\ldots+\hat{k}_s)})=w_{2s}$, при этом:

- $\eta_1(x_{s+1}^{(\hat{k}_1+\ldots+\hat{k}_s)}),\ldots,\eta_1(x_n^{(\hat{k}_1+\ldots+\hat{k}_s)})\in Y_1$ и $\eta_2(x_{s+1}^{(\hat{k}_1+\ldots+\hat{k}_s)}),\ldots,\eta_2(x_n^{(\hat{k}_1+\ldots+\hat{k}_s)})\in Y_2;$ метки $\eta_1(x_m^{(\hat{k}_1+\ldots+\hat{k}_s)})$ и $\eta_2(x_m^{(\hat{k}_1+\ldots+\hat{k}_s)}),$ независимо от условий $\eta_1(x_s^{(\hat{k}_1+\ldots+\hat{k}_s)})=w_{1s}$
- и $\eta_2(x_s^{(\widehat{k}_1+\ldots+\widehat{k}_s)})=w_{2s}$, не содержатся в области определения $G_{\widehat{\Sigma}_s}$ минимального правила 2-разметки η сети Σ_s .

В завершение проведем обоснование корректности действий, выполняемых на шаге с номером (n-1). Пусть первые (n-2) слоев канонического представления сети Σ уже модифицированы таким образом, что сеть

$$\widehat{\Sigma}_{n-2} = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(n-2)1} \cdot \ldots \cdot \Sigma_{(n-2)\widehat{k}_{n-2}}),$$

допускает свободную 2-разметку $\eta = (\eta_1, \eta_2)$ при любых условиях

$$\eta_1(x_1^{(0)}) = v_{11}, \dots, \eta_1(x_n^{(0)}) = v_{1n}, \eta_1(x_1^{(\widehat{k}_1)}) = w_{11}, \dots, \eta_1(x_{n-2}^{(\widehat{k}_1 + \dots + \widehat{k}_{n-2})}) = w_{1n-2}, (4)$$

$$\eta_2(x_1^{(0)}) = v_{21}, \dots, \ \eta_2(x_n^{(0)}) = v_{2n}, \ \eta_2(x_1^{(\widehat{k}_1)}) = w_{21}, \dots, \ \eta_2(x_{n-2}^{(\widehat{k}_1+\dots+\widehat{k}_{n-2})}) = w_{2n-2}, \quad (5)$$

при этом:

— $\eta_1(x_{n-1}^{(\hat{k}_1+\ldots+\hat{k}_{n-2})}), \eta_1(x_n^{(\hat{k}_1+\ldots+\hat{k}_{n-2})}) \in Y_1$ и $\eta_2(x_{n-1}^{(\hat{k}_1+\ldots+\hat{k}_{n-2})}), \eta_2(x_n^{(\hat{k}_1+\ldots+\hat{k}_{n-2})}) \in Y_2;$ — среди $x_{n-1}^{(\hat{k}_1+\ldots+\hat{k}_{n-2})}, x_n^{(\hat{k}_1+\ldots+\hat{k}_{n-2})}$ существует вершина $x_i^{(\hat{k}_1+\ldots+\hat{k}_{n-2})},$ метки которой $\eta_1(x_i^{(\hat{k}_1+\ldots+\hat{k}_{n-2})})$ и $\eta_2(x_i^{(\hat{k}_1+\ldots+\hat{k}_{n-2})})$, независимо от условий (4) и (5), не содержатся в области определения $G_{\widehat{\Sigma}_{n-2}}$ — минимального правила 2-разметки η сети $\widehat{\Sigma}_{n-2}$.

Тогда для свободной разметки μ сети $\widehat{\Sigma}_{n-2}$ с условиями

$$\mu(x_1^{(0)}) = v_1, \ldots, \ \mu(x_n^{(0)}) = v_1, \ \mu(x_1^{(\widehat{k}_1)}) = v_1, \ldots, \ \mu(x_{n-2}^{(\widehat{k}_1 + \ldots + \widehat{k}_{n-2})}) = v_1,$$

согласно сделанному предположению, метка $\mu(x_i^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2})})$ не содержится в области определения минимального правила $F_{\widehat{\Sigma}_{n-2}}$ и при продолжении разметки μ сети $\widehat{\Sigma}_{n-2}$ свободным образом до разметки сети

$$\widehat{\Sigma}'_{n-1} = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(n-2)1} \cdot \ldots \cdot \Sigma_{(n-2)\widehat{k}_{n-2}}) \cdot (\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)k_{n-1}}),$$

согласно лемме 5 из [1], среди вершин $x_{n-1}^{(\hat{k}_1+\ldots+\hat{k}_{n-2}+k_{n-1})}, x_n^{(\hat{k}_1+\ldots+\hat{k}_{n-2}+k_{n-1})}$ существует такая вершина $x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})}$, что метка $\mu(x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})})$ не содержится в области определения минимального правила $F_{\widehat{\Sigma}'_{n-1}}$.

Поскольку разметка μ по построению является свободной разметкой сети $\widehat{\Sigma}'_{n-1}$ с условиями

$$\mu(x_1^{(0)}) = v_1, \ldots, \ \mu(x_n^{(0)}) = v_1, \ \mu(x_1^{(\widehat{k}_1)}) = v_1, \ldots, \ \mu(x_{n-2}^{(\widehat{k}_1 + \ldots + \widehat{k}_{n-2})}) = v_1,$$

то, согласно следствию 12 из [1], для продолжения свободной 2-разметки η сети $\widehat{\Sigma}'_{n-1}$ с условиями (4) и (5) выполнены следующие условия:

- $\eta_1(x_{n-1}^{(\widehat{k}_1+\ldots+\widehat{k}_{n-1}+k_{n-1})}), \eta_1(x_n^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})}) \in Y_1; \\ \eta_2(x_{n-1}^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})}), \eta_2(x_n^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})}) \in Y_2; \\ \text{ метки } \eta_1(x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})}) \text{ и } \eta_2(x_j^{(\widehat{k}_1+\ldots+\widehat{k}_{n-2}+k_{n-1})}), \text{ независимо от условий } (4) \text{ и } (5),$ не содержатся в области определения $G_{\widehat{\Sigma}'_{n-1}}$ — минимального правила 2-разметки η сети $\widehat{\Sigma}'_{n-1}$.

В каждом из возможных вариантов модификации сети $\widehat{\Sigma}_{n-1}'$ свободная 2-разметка η сети $\widehat{\Sigma}'_{n-1}$ с условиями (4) и (5) свободным образом продолжается до свободной

$$\widehat{\Sigma} = (\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\widehat{k}_1}) \cdot \ldots \cdot (\Sigma_{(n-2)1} \cdot \ldots \cdot \Sigma_{(n-2)\widehat{k}_{n-2}}) \cdot (\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)\widehat{k}_{n-1}})$$

с произвольными условиями $\eta_1(x_{n-1}^{(\hat{k}_1+\ldots+\hat{k}_{n-1})})=w_{1n-1},\ \eta_1(x_n^{(\hat{k}_1+\ldots+\hat{k}_{n-1})})=w_{1n}$ и $\eta_2(x_{n-1}^{(\hat{k}_1+\ldots+\hat{k}_{n-1})})=w_{2n-1},\ \eta_2(x_n^{(\hat{k}_1+\ldots+\hat{k}_{n-1})})=w_{2n}.$

Таким образом, в результате работы алгоритма каноническое представление исходной сети Σ модифицировано до «почти» канонического представления

$$(\Sigma_{11} \cdot \ldots \cdot \Sigma_{1\hat{k}_1}) \cdot \ldots \cdot (\Sigma_{(n-1)1} \cdot \ldots \cdot \Sigma_{(n-1)\hat{k}_{n-1}})$$

новой биективной сети $\widehat{\Sigma}$, сложность которой не превосходит $\|\Sigma\| + 6n - 7$. При этом построенная сеть $\widehat{\Sigma}$ допускает свободную 2-разметку с произвольными ограничениями

$$\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$$
 и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ из \mathbb{N} . Поскольку $\|\widehat{\Sigma}\| \leqslant \|\Sigma\| + 6n - 7$, для проведения свободной 2-разметки сети $\widehat{\Sigma}$ с произвольными ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ из \mathbb{N} потребуется не более чем $2\|\Sigma\| + 14n - 14$ различных меток. Значит, при выборе любого множества Ω , мощность которого больше $2\|\Sigma\| + 14n - 14$, можно считать, что сеть $\widehat{\Sigma}$ допускает свободную 2-разметку элементами множества Ω при произвольных ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$ и $\begin{pmatrix} v_{21} & \dots & v_{2n} \\ w_{21} & \dots & w_{2n} \end{pmatrix}$ из Ω . Последнее утверждение, согласно теореме 7, равносильно 2-транзитивности сети $\widehat{\Sigma}$ для множества Ω . \blacksquare

Следствие 7. Для любого $n \ge 2$ существует сеть $\widehat{\Sigma}$ ширины n и веса 6n-7, которая 2-транзитивна для всех множеств, мощность которых больше чем 14n-14.

4. к-Транзитивность сетей

Определение 26. Биективную сеть Σ будем называть k-транзитивной для множества Ω , если множество отображений $\{\Sigma^F : F \in \mathcal{Q}(\Omega)\}$ является k-транзитивным.

Как уже было отмечено, аппарат разметки сетей позволяет проверять не только транзитивность сети, но и более сложное свойство k-транзитивности при $k \geqslant 2$. При этом понятия аппарата k-разметки биективных сетей и основные результаты, полученные с их помощью, являются очевидным обобщением соответствующих понятий и результатов для 2-разметки. Поэтому далее приведены только необходимые определения и точные формулировки основных результатов.

Определение 27. Произвольный набор $\mu = (\mu_1, \dots, \mu_k)$ разметок сети Σ будем называть k-разметкой сети Σ . При этом метки разметок μ_1, \dots, μ_k будем называть метками k-разметки μ . Пусть $F \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — частично определённое отображение. Тогда k-разметку $\mu = (\mu_1, \dots, \mu_k)$ сети Σ будем называть n равильной m относительно F, если каждая из разметок μ_1, \dots, μ_k является правильной относительно F, а отображение F будем называть n равильом k-разметки μ .

Определение 28. Пусть $\mu-k$ -разметка сети Σ с правилом F и при этом никакое сужение частичного отображения F не является правилом k-разметки μ . Тогда будем говорить, что F является минимальным правилом k-разметки μ . Правильную k-разметку μ будем называть непротиворечивой, если её минимальное правило является непротиворечивым отображением.

Пусть $\eta = (\eta_1, \dots, \eta_k)$ и $\mu = (\mu_1, \dots, \mu_k) - k$ -разметки сети Σ и для отображения σ выполняются соотношения $\sigma \circ \eta_1 = \mu_1, \dots, \sigma \circ \eta_k = \mu_k$. Будем обозначать это условие как $\sigma \colon \eta \to \mu$.

Определение 29. Правильную k-разметку η сети Σ с начальным условием $(v_{11}, \ldots, v_{1n}), \ldots, (v_{k1}, \ldots, v_{kn})$ будем называть $c 6 0 6 0 \partial n 0 \ddot{u}$, если для любой правильной k-разметки μ сети Σ с начальным условием $(v_{11}, \ldots, v_{1n}), \ldots, (v_{k1}, \ldots, v_{kn})$ существует отображение σ_{μ} , удовлетворяющее условию σ_{μ} : $\eta \to \mu$.

При $k\geqslant 2$ естественным образом определяются npouedypu последовательного u параллельного свободного продолжения разметки, относительно которых сохраняются основные результаты.

Теорема 14. Пусть k-разметка μ' получена в результате последовательного свободного продолжения начальной k-разметки

$$\mu_1(x_1^{(0)}) = v_{11}, \ldots, \ \mu_1(x_n^{(0)}) = v_{1n}, \ldots, \ \mu_k(x_1^{(0)}) = v_{21}, \ldots, mu_k(x_n^{(0)}) = v_{kn}$$

и правила F относительно сети Σ , а k-разметка μ'' получена в результате параллельного свободного продолжения начальной k-разметки

$$\mu_1(x_1^{(0)}) = v_{11}, \ldots, \mu_1(x_n^{(0)}) = v_{1n}, \ldots, \mu_k(x_1^{(0)}) = v_{21}, \ldots, mu_k(x_n^{(0)}) = v_{kn}$$

и правила F относительно сети Σ . Тогда k-разметки μ' и μ'' отличаются только обратимой заменой меток.

Теорема 15. Пусть k-разметка η получена в результате параллельного свободного продолжения начальной k-разметки

$$\eta_1(x_1^{(0)}) = v_{11}, \ldots, \ \eta_1(x_n^{(0)}) = v_{1n}, \ldots, \ \eta_k(x_1^{(0)}) = v_{k1}, \ldots, \ \eta_k(x_n^{(0)}) = v_{kn}$$

и пустого правила G относительно сети Σ . Тогда η — свободная k-разметка сети Σ , а отображение $G_{\Sigma,\eta}$ — её минимальное правило.

Теорема 16. Пусть η — свободная k-разметка сети Σ , μ — правильная k-разметка сети Σ и возможно определить отображение σ_{μ} по правилу

$$\sigma_{\mu}(\eta_1(x_i^{(0)})) = \mu_1(x_i^{(0)}), \ldots, \ \sigma_{\mu}(\eta_k(x_i^{(0)})) = \mu_k(x_i^{(0)}), \ i \in \{1, \ldots, n\}.$$

Тогда отображение σ_{μ} допускает продолжение, удовлетворяющее условию $\sigma_{\mu} \colon \eta \to \mu$.

Следствие 8. В условиях теоремы, если G и F — минимальные правила k-разметок η и μ соответственно, то при всех допустимых $z_i, z_j \in \mathbb{N}$ выполняется равенство $\sigma_{\mu}(G(z_i, z_j)) = F(\sigma_{\mu}(z_i), \sigma_{\mu}(z_j)).$

Определение 30. k-разметку $\mu = (\mu_1, \dots, \mu_k)$ сети Σ будем называть k-разметкой сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$, если μ_1, \dots, μ_k — разметки сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$ соответственно. При этом будем говорить, что сеть Σ допускает k-разметку μ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$. Нетривиальной будем называть такую k-разметку $\mu = (\mu_1, \dots, \mu_k)$ сети Σ , у которой μ_1, \dots, μ_k — различные разметки сети Σ .

Теорема 17. Пусть Σ —биективная сеть ширины n и Ω —множество мощности строго больше чем $k\|\Sigma\|$. Тогда следующие утверждения эквивалентны:

- 1) сеть Σ является k-транзитивной для множества Ω ;
- 2) сеть Σ допускает нетривиальную правильную непротиворечивую k-разметку элементами из Ω при любых ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$.

Следствие 9. Для биективной сети Σ следующие утверждения эквивалентны:

- 1) сеть Σ является k-транзитивной для некоторого множества, мощность которого строго больше чем $k\|\Sigma\| + kn$;
- 2) сеть Σ является k-транзитивной для произвольного множества, мощность которого строго больше чем $k\|\Sigma\| + kn$.

Для k-разметки аналогичным образом определяется npouedypa устранения $npomueopeuu\check{u}$, относительно которой сохраняется основной результат.

Лемма 3. Пусть η —произвольная k-разметка сети Σ , μ —правильная непротиворечивая k-разметка сети Σ и при этом существует отображение $\sigma_{\mu} \colon \eta \to \mu$. Тогда для любой k-разметки $\widetilde{\eta}$, полученной из k-разметки η устранением противоречий, также выполняется условие $\sigma_{\mu} \colon \widetilde{\eta} \to \mu$.

Следствие 10. Пусть η — произвольная 2-разметка сети Σ . Тогда правильная непротиворечивая k-разметка $\widetilde{\eta}$, полученная из k-разметки η устранением противоречий, определена однозначно с точностью до обратимого переобозначения меток.

Определение 31. Правильную непротиворечивую k-разметку η сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$ будем называть csobodной k-разметкой cemu Σ c ограничениями, если для любой правильной непротиворечивой k-разметки μ сети Σ c ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$ существует отображение $\sigma_{\mu} \colon \eta \to \mu$.

Теорема 18. Если сеть Σ допускает нетривиальную правильную непротиворечивую k-разметку с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$, то существует свободная k-разметка сети Σ с указанными ограничениями.

Теорема 19. Пусть имеются свободная k-разметка η сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$, а также правильная непротиворечивая 2-разметка μ сети Σ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}, \dots, \begin{pmatrix} \bar{v}_{k1} & \dots & \bar{v}_{kn} \\ \bar{w}_{k1} & \dots & \bar{w}_{kn} \end{pmatrix}$, при которых возможно определить отображение σ_{μ} по правилу

$$\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}, \ \sigma_{\mu}(w_{1i}) = \bar{w}_{1i}, \ \ldots, \ \sigma_{\mu}(v_{ki}) = \bar{v}_{ki}, \ \sigma_{\mu}(w_{ki}) = \bar{w}_{ki}, \ i \in \{1, \ldots, n\}.$$

Тогда отображение σ_{μ} допускает продолжение, удовлетворяющее условию $\sigma_{\mu} \colon \eta \to \mu$.

Следствие 11. В условиях теоремы, если G и F — минимальные правила разметок η и μ соответственно, то при всех допустимых $z_i, z_j \in \mathbb{N}$ выполняется равенство $\sigma_{\mu}(G(z_i, z_j)) = F(\sigma_{\mu}(z_i), \sigma_{\mu}(z_j)).$

Сформулируем и докажем один из немногих результатов из области k-разметки, доказательство которого существенным образом отличается от соответствующего доказательства в случае 2-разметки.

Теорема 20. Сеть Σ допускает нетривиальные правильные непротиворечивые k-разметки при всех возможных ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$ из $\mathbb N$ в том и только в том случае, когда сеть Σ допускает нетривиальные правильные непротиворечивые k-разметки при всех возможных ограничениях $\begin{pmatrix} \bar v_{11} & \dots & \bar v_{1n} \\ \bar w_{11} & \dots & \bar w_{1n} \end{pmatrix}$,

$$\ldots, \begin{pmatrix} \bar{v}_{k1} & \ldots & \bar{v}_{kn} \\ \bar{w}_{k1} & \ldots & \bar{w}_{kn} \end{pmatrix}$$
 из Ω_{k+1} .

Доказательство. Необходимость очевидна. Докажем достаточность. Будем считать, что $\mathbb{N}\setminus\{v_{11},\ldots,v_{k1},\ldots,v_{kn},w_{11},\ldots,w_{k1},\ldots,w_{kn}\}=\{y_{11},\ldots,y_{k1},y_{12},\ldots,y_{k2},\ldots\}.$ Пусть свободная k-разметка $\eta'=(\eta'_1,\ldots,\eta'_k)$ сети Σ получена в результате свободного продолжения начальной k-разметки $\eta'_1(x_1^{(0)})=v_{11},\ldots,\eta'_1(x_n^{(0)})=v_{1n},\ldots,\eta'_k(x_1^{(0)})=v_{k1},$

 $\ldots, \eta'_k(x_n^{(0)}) = v_{kn}$ с использованием меток $y_{11}, \ldots, y_{k1}, y_{12}, \ldots, y_{k2}, \ldots$ Тогда, согласно теореме 19, для любой правильной непротиворечивой k-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}, \dots, \begin{pmatrix} \bar{v}_{k1} & \dots & \bar{v}_{kn} \\ \bar{w}_{k1} & \dots & \bar{w}_{kn} \end{pmatrix}$ из Ω_{k+1} , при которых возможно определить отображение σ_{μ} по правилу

$$\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}, \ldots, \ \sigma_{\mu}(v_{ki}) = \bar{v}_{ki}, \ \sigma_{\mu}(w_{1i}) = \bar{w}_{1i}, \ldots, \ \sigma_{\mu}(w_{ki}) = \bar{w}_{ki}, \ i \in \{1, \ldots, n\},$$

отображение σ_{μ} продолжается таким образом, что удовлетворяет условию $\sigma_{\mu} \colon \eta' \to \mu$. Заменив в k-разметке η' метки $\eta'_1(x_1^{(t)}), \ldots, \eta'_1(x_n^{(t)}), \ldots, \eta'_k(x_1^{(t)}), \ldots, \eta'_k(x_n^{(t)})$ на $w_{11}, \ldots, w_{k1}, \ldots, w_{kn}$ соответственно, получим k-разметку η'' сети Σ с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$, ..., $\begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$, и при этом для любой правильной непротиворечивой k-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}, \dots, \begin{pmatrix} \bar{v}_{k1} & \dots & \bar{v}_{kn} \\ \bar{w}_{k1} & \dots & \bar{w}_{kn} \end{pmatrix}$, при которых возможно определить отображение σ_{μ} по правилу

$$\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}, \ldots, \ \sigma_{\mu}(v_{ki}) = \bar{v}_{ki}, \ \sigma_{\mu}(w_{1i}) = \bar{w}_{1i}, \ldots, \ \sigma_{\mu}(w_{ki}) = \bar{w}_{ki}, \ i \in \{1, \ldots, n\},$$

отображение σ_{μ} продолжается таким образом, что удовлетворяет условию $\sigma_{\mu} \colon \eta'' \to \mu$. Проведём процедуру устранения противоречий в k-разметке η'' с уточнениями:

- если при устранении противоречия требуется отождествить метки v_{ri} и y_{si} , то будем заменять метку y_{sj} на v_{ri} ;
- если при устранении противоречия требуется отождествить метки w_{ri} и $y_{sj},$ то будем заменять метку y_{si} на w_{ri} .

Пусть η — правильная непротиворечивая k-разметка сети Σ , полученная из k-разметки η'' устранением противоречий. Тогда, согласно сделанным уточнениям, метки $\eta_1(x_1^{(0)}), \dots, \eta_k(x_1^{(0)}), \dots, \eta_1(x_n^{(0)}), \dots, \eta_k(x_n^{(0)}), \eta_1(x_1^{(t)}), \dots, \eta_k(x_1^{(t)}), \dots, \eta_1(x_n^{(t)}), \dots, \eta_k(x_n^{(t)})$ содержатся в множестве $\{v_{11},\ldots,v_{k1},\ldots,v_{1n},\ldots,v_{kn},w_{11},\ldots,w_{k1},\ldots,w_{1n},\ldots,w_{kn}\}.$ При этом, согласно лемме 3, для любой правильной непротиворечивой 2-разметки μ с ограничениями $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$, ..., $\begin{pmatrix} \bar{v}_{k1} & \dots & \bar{v}_{kn} \\ \bar{w}_{k1} & \dots & \bar{w}_{kn} \end{pmatrix}$ из Ω_{k+1} , при которых возможно определить отображение σ_{μ} по правилу

$$\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}, \ldots, \ \sigma_{\mu}(v_{ki}) = \bar{v}_{ki}, \ \sigma_{\mu}(w_{1i}) = \bar{w}_{1i}, \ldots, \ \sigma_{\mu}(w_{ki}) = \bar{w}_{ki}, \ i \in \{1, \ldots, n\},$$

отображение σ_{μ} продолжается таким образом, что удовлетворяет условию σ_{μ} : $\eta \to \mu$. Методом от противного покажем, что правильная непротиворечивая k-разметка η будет k-разметкой с ограничениями $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$. Согласно уточнениям, в разметке η могли появиться противоречия только следующих типов:

- $\eta_r(x_i^{(0)}) = v_{sj} \neq v_{ri};$
- $\eta_r(x_i^{(0)}) = w_{sj} \neq v_{ri};$ $\eta_r(x_i^{(t)}) = v_{sj} \neq w_{ri};$
- $\eta_r(x_i^{(t)}) = w_{sj} \neq w_{ri}.$

Разберём подслучай $\eta_1(x_i^{(0)}) = v_{1j} \neq v_{1i}$, относящийся к первому типу противоречий. Предварительно докажем два вспомогательных утверждения.

Лемма 4. Пусть $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_k = (v_{k1}, \dots, v_{kn}) \in \mathbb{N}^n$ — различные векторы. Тогда существует такое отображение $\sigma \colon \mathbb{N} \to \Omega_k$, при котором все векторы $\sigma(\mathbf{v}_1)=(\sigma(v_{11}),\ldots,\sigma(v_{1n})),\ldots,\sigma(\mathbf{v}_k)=(\sigma(v_{k1}),\ldots,\sigma(v_{kn}))$ различны.

Доказательство. Не ограничивая общности, будем считать, что векторы $\mathbf{v}_1, \dots, \mathbf{v}_k$ не содержат элементов из множества Ω_k .

Докажем индукцией по s существование отображения $\sigma_s \colon \mathbb{N} \to \Omega_s$, при котором множество $\{\sigma_s(\mathbf{v}_1), \dots, \sigma_s(\mathbf{v}_k)\}$ содержит не менее s различных векторов.

База при $\sigma_1 \colon \mathbb{N} \to \{1\}$ очевидна — множество векторов $\{\sigma_1(\mathbf{v}_1), \dots, \sigma_1(\mathbf{v}_k)\}$ является одноэлементным.

Предположим, что построено такое отображение $\sigma_s \colon \mathbb{N} \to \Omega_s$, при котором множество $\{\sigma_s(\mathbf{v}_1), \ldots, \sigma_s(\mathbf{v}_k)\}$ содержит $r \geqslant s$ различных векторов. Не ограничивая общности, будем считать, что $\sigma_s(\mathbf{v}_1), \ldots, \sigma_s(\mathbf{v}_r)$ — все различные элементы множества $\{\sigma_s(\mathbf{v}_1), \ldots, \sigma_s(\mathbf{v}_k)\}$. Если r = k, то утверждение доказано, в противном случае, не ограничивая общности, можно считать, что $\sigma_s(\mathbf{v}_r) = \sigma_s(\mathbf{v}_{r+1})$. Поскольку $\mathbf{v}_r \neq \mathbf{v}_{r+1}$, то $v_{rj} \neq v_{r+1j}$ для некоторого j; полагая

$$\sigma_{s+1}(x) = egin{cases} s+1, & ext{если } x=v_{r+1j}, \ \sigma_s(x), & ext{если } x
eq v_{r+1j}, \end{cases}$$

получим, что множество $\{\sigma_{s+1}(\mathbf{v}_1), \dots, \sigma_{s+1}(\mathbf{v}_k)\}$ содержит как минимум $(r+1) \geqslant (s+1)$ различных векторов: $\sigma_{s+1}(\mathbf{v}_1), \dots, \sigma_{s+1}(\mathbf{v}_{r+1})$.

Лемма 5. Пусть $\mathbf{v}_1 = (v_{11}, \dots, v_{1n}), \dots, \mathbf{v}_k = (v_{k1}, \dots, v_{kn}) \in \mathbb{N}^n$ — различные векторы и $\mathbf{w}_1 = (w_{11}, \dots, w_{1n}), \dots, \mathbf{w}_k = (w_{k1}, \dots, w_{kn}) \in \mathbb{N}^n$ — различные векторы. Тогда существует такое отображение $\sigma \colon \mathbb{N} \to \Omega_k$, при котором все векторы $\sigma(\mathbf{v}_1), \dots, \sigma(\mathbf{v}_k)$ различны и все векторы $\sigma(\mathbf{w}_1), \dots, \sigma(\mathbf{w}_k)$ различны.

Доказательство. Не ограничивая общности, будем считать, что векторы $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}_1, \dots, \mathbf{w}_k$ не содержат элементов из множества Ω_k .

Докажем индукцией по s существование отображения $\sigma_s \colon \mathbb{N} \to \Omega_s$, при котором каждое из множеств $\{\sigma_s(\mathbf{v}_1), \dots, \sigma_s(\mathbf{v}_k)\}$ и $\{\sigma_s(\mathbf{w}_1), \dots, \sigma_s(\mathbf{w}_k)\}$ содержит не менее s различных векторов.

База при $\sigma_1 \colon \mathbb{N} \to \{1\}$ очевидна — множества векторов $\{\sigma_1(\mathbf{v}_1), \dots, \sigma_1(\mathbf{v}_k)\}$ и $\{\sigma_s(\mathbf{w}_1), \dots, \sigma_s(\mathbf{w}_k)\}$ являются одноэлементными.

Предположим, что построено такое отображение $\sigma_s \colon \mathbb{N} \to \Omega_s$, при котором $|\{\sigma_s(\mathbf{v}_1), \dots, \sigma_s(\mathbf{v}_k)\}| \ge s$ и $|\{\sigma_s(\mathbf{w}_1), \dots, \sigma_s(\mathbf{w}_k)\}| \ge s$. Если $|\{\sigma_s(\mathbf{v}_1), \dots, \sigma_s(\mathbf{v}_k)\}| = k$ или $|\{\sigma_s(\mathbf{w}_1), \dots, \sigma_s(\mathbf{w}_k)\}| = k$, то дальнейшее построение отображения σ осуществляется согласно доказательству леммы 4, в частности, если $|\{\sigma_s(\mathbf{v}_1), \dots, \sigma_s(\mathbf{v}_k)\}| = |\{\sigma_s(\mathbf{w}_1), \dots, \sigma_s(\mathbf{w}_k)\}| = k$, то утверждение доказано. В противном случае достаточно рассмотреть два возможных случая.

C л у ч а й 1. Если существует такой $a \in \mathbb{N}$, при котором для отображения

$$\sigma_{s+1}(x) = egin{cases} s+1, & ext{если } x=a, \ \sigma_s(x), & ext{если } x
eq a, \end{cases}$$

выполняются оба неравенства $|\{\sigma_{s+1}(\mathbf{v}_1), \dots, \sigma_{s+1}(\mathbf{v}_k)\}| > |\{\sigma_{s}(\mathbf{v}_1), \dots, \sigma_{s}(\mathbf{v}_k)\}|$ и $|\{\sigma_{s+1}(\mathbf{w}_1), \dots, \sigma_{s+1}(\mathbf{w}_k)\}| > |\{\sigma_{s}(\mathbf{w}_1), \dots, \sigma_{s}(\mathbf{w}_k)\}|$, то отображение σ_{s+1} является искомым.

Случай 2. Если при любом $a \in \mathbb{N}$ для отображения

$$\sigma_{s+1}(x) = egin{cases} s+1, & ext{если } x=a, \ \sigma_s(x), & ext{если } x
eq a, \end{cases}$$

выполняется одно из равенств $|\{\sigma_{s+1}(\mathbf{v}_1), \dots, \sigma_{s+1}(\mathbf{v}_k)\}| = |\{\sigma_s(\mathbf{v}_1), \dots, \sigma_s(\mathbf{v}_k)\}|$ или $|\{\sigma_{s+1}(\mathbf{w}_1), \dots, \sigma_{s+1}(\mathbf{w}_k)\}| = |\{\sigma_s(\mathbf{w}_1), \dots, \sigma_s(\mathbf{w}_k)\}|$, то выберем произвольное $a \in \mathbb{N}$, для которого выполняется неравенство

$$|\{\sigma_{s+1}(\mathbf{v}_1),\ldots,\sigma_{s+1}(\mathbf{v}_k)\}| > |\{\sigma_s(\mathbf{v}_1),\ldots,\sigma_s(\mathbf{v}_k)\}|,$$

и произвольное $b \in \mathbb{N}$, для которого выполняется неравенство

$$|\{\sigma_{s+1}(\mathbf{w}_1),\ldots,\sigma_{s+1}(\mathbf{w}_k)\}| > |\{\sigma_s(\mathbf{w}_1),\ldots,\sigma_s(\mathbf{w}_k)\}|.$$

В таком случае искомым является отображение

$$\sigma_{s+1}(x) = egin{cases} s+1, & ext{если } x=a ext{ или } x=b, \ \sigma_s(x), & ext{если } x
eq a,b, \end{cases}$$

для которого выполняются оба неравенства $|\{\sigma_{s+1}(\mathbf{v}_1), \dots, \sigma_{s+1}(\mathbf{v}_k)\}| > |\{\sigma_{s}(\mathbf{v}_1), \dots, \sigma_{s}(\mathbf{v}_k)\}|$ и $|\{\sigma_{s+1}(\mathbf{w}_1), \dots, \sigma_{s+1}(\mathbf{w}_k)\}| > |\{\sigma_{s}(\mathbf{w}_1), \dots, \sigma_{s}(\mathbf{w}_k)\}|$.

Из последнего результата следует, что для произвольных нетривиальных ограничений $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}, \dots, \begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$ существует отображение $\sigma \colon \mathbb{N} \to \Omega_k$, при котором $\begin{pmatrix} \sigma(v_{11}) & \dots & \sigma(v_{1n}) \\ \sigma(w_{11}) & \dots & \sigma(w_{1n}) \end{pmatrix}, \dots, \begin{pmatrix} \sigma(v_{k1}) & \dots & \sigma(v_{kn}) \\ \sigma(w_{k1}) & \dots & \sigma(w_{kn}) \end{pmatrix}$ — нетривиальные ограничения из Ω_k . Если $\sigma(v_{1j}) = \sigma(v_{1i})$, то корректно переопределить σ так, что $\sigma(v_{1i}) = k+1$. В результате будут получены нетривиальные ограничения $\begin{pmatrix} \sigma(v_{11}) & \dots & \sigma(v_{1n}) \\ \sigma(w_{11}) & \dots & \sigma(w_{1n}) \end{pmatrix}$, ..., $\begin{pmatrix} \sigma(v_{k1}) & \dots & \sigma(v_{kn}) \\ \sigma(w_{k1}) & \dots & \sigma(w_{kn}) \end{pmatrix}$ из Ω_{k+1} . Согласно условию теоремы, существует правильная непротиворечивая k-разметка μ с ограничениями $\begin{pmatrix} \sigma(v_{11}) & \dots & \sigma(v_{1n}) \\ \sigma(w_{11}) & \dots & \sigma(w_{1n}) \end{pmatrix}$, ..., $\begin{pmatrix} \sigma(v_{k1}) & \dots & \sigma(v_{kn}) \\ \sigma(w_{k1}) & \dots & \sigma(w_{kn}) \end{pmatrix}$ из Ω_{k+1} , и при этом отображение σ_{μ} , определённое по правилу $\sigma_{\mu}(v_{1i}) = \bar{v}_{1i}$, $\sigma_{\mu}(v_{2i}) = \bar{v}_{2i}$, $\sigma_{\mu}(w_{1i}) = \bar{w}_{1i}$, $\sigma_{\mu}(w_{2i}) = \bar{w}_{2i}$, $i \in \{1, \dots, n\}$, продолжается таким образом, что удовлетворяет условию $\sigma_{\mu} \colon \eta \to \mu$. Получили противоречие, поскольку $\sigma_{\mu}(\eta_{1}(x_{i}^{(0)})) = \sigma(v_{1j}) \neq \sigma(v_{1i}) = \mu(x_{i}^{(0)})$. Отсутствие противоречий всех остальных типов устанавливается аналогичным образом. \blacksquare

Следствие 12. Пусть Σ — биективная сеть ширины n и Ω — множество мощности не менее чем $k\|\Sigma\| + kn$. Тогда следующие утверждения эквивалентны:

- 1) сеть Σ является k-транзитивной для множества Ω ;
- 2) сеть Σ допускает нетривиальную правильную непротиворечивую k-размет-ку элементами множества Ω при любых ограничениях $\begin{pmatrix} v_{11} & \dots & v_{1n} \\ w_{11} & \dots & w_{1n} \end{pmatrix}$, ..., $\begin{pmatrix} v_{k1} & \dots & v_{kn} \\ w_{k1} & \dots & w_{kn} \end{pmatrix}$ из множества Ω ;
 3) сеть Σ допускает нетривиальную правильную непротиворечивую k-размет-
- 3) сеть Σ допускает нетривиальную правильную непротиворечивую k-разметку элементами множества Ω при любых ограничениях $\begin{pmatrix} \bar{v}_{11} & \dots & \bar{v}_{1n} \\ \bar{w}_{11} & \dots & \bar{w}_{1n} \end{pmatrix}$, ..., $\begin{pmatrix} \bar{v}_{k1} & \dots & \bar{v}_{kn} \\ \bar{w}_{k1} & \dots & \bar{w}_{kn} \end{pmatrix}$ из множества $\Omega_{k+1} \subset \Omega$;

4) множество преобразований $\{\Sigma^F: F \in \mathcal{Q}(\Omega)\}$ действует транзитивным образом на подмножестве $\Omega^n_{k+1} \subset \Omega^n$.

Замечание 5. Вспомогательные леммы 4 и 5 из доказательства теоремы 20, по всей видимости, сами по себе являются интересными результатами, допускающими эквивалентные формулировки в разных областях дискретной математики. Так, например, лемму 4 можно переформулировать на языке теории графов следующим образом: «хроматическое число графа, содержащего не более k(k-1)/2 рёбер, не превышает k».

В заключение отметим, что приведённый в работе алгоритм построения 2-транзитивной сети на самом деле строит сеть, которая k-транзитивна для всех достаточно больших множеств.

Теорема 21. Пусть Σ —произвольная биективная сеть ширины n. Тогда её модификация $\widehat{\Sigma}$ является k-транзитивной для любого множества Ω , мощность которого больше чем $k\|\Sigma\| + 7k(n-1)$.

Следствие 13. Для любого $n \ge 2$ существует сеть $\widehat{\Sigma}$ ширины n и веса 6n-7, которая k-транзитивна для всех множеств, мощность которых больше чем 7k(n-1).

Автор выражает благодарность А. В. Черемушкину за постановку задачи и внимание к проводимым исследованиям.

ЛИТЕРАТУРА

- 1. Чередник И.В. Один подход к построению транзитивного множества блочных преобразований // Прикладная дискретная математика. 2017. № 38. С. 5–34.
- 2. Белоусов В. Д. Основы теории квазигрупп и луп. М.: Наука, 1967.

REFERENCES

- 1. Cherednik I. V. Odin podhod k postroeniyu tranzitivnogo mnozhestva blochnyh preobrazovanij [One approach to constructing a transitive class of block transformations]. Prikladnaya Diskretnaya Matematika, 2017, no. 38, pp. 5–34. (in Russian)
- 2. Belousov V. D. Osnovy teorii kvazigrupp i lup [Foundations of the Quasigroups and Loops Theory]. Moscow, Nauka Publ., 1967. (in Russian)