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Here is a description of ElGamal public-key encryption and digital signature schemes 
constructed on the base of bijective systems of Boolean functions. The description 
is illustrated with a simple example in which the used Boolean functions are written 
in logical notation. In our encryption and signature schemes on Boolean functions, 
every one ciphertext or message signature is a pair of values, as in the basic ElGamal 
cryptosystem on a group. In our case, these values are Boolean vectors. Each vector 
in the pair depends on the value of a function on a plaintext or on a message, and 
this function is typically obtained from a given bijective vector Boolean function g by 
applying some random and secret negation and permutation operations on the sets of 
variables and coordinate functions of g. For the pair of vectors in the ciphertext or 
in the message signature, the decryption algorithm produces the plaintext, and the 
signature verification algorithm accepts the signature, performing some computation 
on this pair. The signature is accepted for a message if and only if the computation 
results in this message. All the computations in the processes of encryption, decryp­
tion, signing and verification are logical and performed for Boolean values, promising 
their implementation efficiency to be more high than in the basic ElGamal schemes 
on groups.

Keyw ords: bijective vector Boolean functions, permutation and negation operations, 
ElGamal encryption, ElGamal signature.

In tro d u c tio n
The ElGamal cryptosystems, including the basic encryption and signature schemes as 

well as their multiple generalizations and variations [1], are typically defined on the base 
of some groups in which the group operation is easily to apply and the discrete logarithm 
problem is computationally infeasible. The multiplicative groups Zp, and additive group
of points on elliptic curve over Fq have received the most attention [1]. It is known th a t the 
public-key cryptosystems based on similar groups are particularly susceptible to quantum  
attacks. The ElGamal cryptosystems are not excluded from this family.

In this paper, we try  to propose an alternative m athem atical background for 
constructing ElGamal cryptosystems, namely the algebra of bijective vector Boolean 
functions with the negation and perm utation operations on the sets of their variables 
and coordinate functions. Section 2 of the paper is a collection of the basic elements of 
this background th a t we use in the description of our ElGamal encryption and signature 
schemes in Sections 3 and 5 respectively and of an illustrative example in Section 4. For any 
of operations encryption and signature, we consider different variations of the scheme and 
describe each of them  in the form of the corresponding basic ElGamal scheme (encryption 
or signature). For reader's convenience, Section 1 recalls the basic ElGamal encryption and 
signature schemes in this form from [1].
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,p - 2 } ,  ( k , p—l) = 1, Y =  mod p, 6  = к ^ { m - a p ) mod ( p - 1),

1. B asic  E lG a m a l c ry p to s y s te m  
1.1. B a s i c  E l G a m a l  e n c r y p t i o n  s c h e m e

Parameters: p  is a large random prime, a  is a generator of the multiplicative group Zp, 
a is a random integer, 1 ^  a ^  p — 2, m  is a plaintext, m  G Zp.

Public key is (p, a, a “), private key is a.
Encryption: к Gr {1, 2 , . . . , p  — 2} (here and further, the symbol GR means “to be 

randomly chosen”), p =  a k mod p, 6 =  m (a a)k mod p, (p, 6) is the ciphertext.
Decryption: p -a 6 (= a -akm a ak) = m  mod p.

1.2. B a s i c  E l G a m a l  s i g n a t u r e  s c h e m e
Parameters: p  is a large random prime, a  is a generator of the multiplicative group Zp, 

a is a random integer, 1 ^  a ^  p — 2, в  = a a, m  is a message (or its hash value), m  G Zp.
Public key is (p ,a , e ) ,  private key is a.
Signing: к GR {1, 2, 

signature for m  is the pair (p, 6).
Verification: if p ^  1 or p > p — 1, then reject the signature (p, 6), otherwise accept the 

signature (p, 6) if and only if в Y7  ̂ =  a m mod p.

2. A lg e b ra  o f b ije c tiv e  v e c to r  B o o lean  fu n c tio n s
F irst of all, we note th a t earlier some elements of this algebra were used in constructing 

and cryptanalysis of cryptographic systems with functional keys, namely in [2] —for 
symmetric block ciphers, in [3] —for public-key encryption and signature schemes.

2.1. P e r m u t a t i o n  a n d  n e g a t i o n  o p e r a t i o n s
We begin with the notions of the perm utation and negation operations over Boolean 

vectors. Let n  be an integer, n  ^  2, and be the set of all perm utations of the row 
(12 . . .  n), tha t is, Sn =  {(ii І2 . . . i n )  : ij G {1, 2 , . . .  , n } , j  = r ^  ij = ir; j , r  G { 1 ,.. .  ,n}}. 
A perm utation n =  (i1i2 . . .  in) G Sn is called a permutation operation on Fn if the result 
of its application to any vector w  =  w 1w 2 .. .w n in Fn is the vector n(w)  =  Wi  ̂wi2 . . .  win.
A Boolean vector a =  b1b2 .. .bn G Fn is called a negation operation on Fn if the result of

a^1 ao2 a n , where for aits application to a vector a  =  a 1a2 .. .an in Fn is the vector a^ 
and b in F2, we have ab =  a if b = 1  and ab =  —a if b =  0. Both of these operations are 
invertible. The inversions for them  are denoted in the usual manner, namely n -1 and a -1 . 
By the definition, if n =  (i1i2 . . .  in), s(k) =  ik, and n -1 =  ( j1j 2 . . .  j n), then s -1 (ik) =  k,
s - 1(k) =  j k, and j k =  s - 1(s-1 (ik)), к G {1 ,2 , . . . ,n } .  The perm utation and negation 
operations n and a are called identity and denoted by 1 if n =  (12 . . .  n) and a =  11 . . .  1 
respectively. So 1(w) =  w and a 1 =  a.

2.2. C o m b i n a t o r i a l  a n d  a l g e b r a i c  n o t a t i o n s  
Let x  =  (x 1 , x 2, . . .  , x n) be a string of n different Boolean variables, g 

a n-dimensional vector Boolean function g(x), and gi : Fn ^  F 2, i G {1,2, 
coordinate functions of g. That is, g(x) =  g1(x)g2(x ) .. .gn(x). Let n 1,n 2 and a 1 , a 2 be the 
symbols of variables with the values, respectively, of perm utation operations in Sn and of 
negation operations in Fn, namely a 1 , n 1 —over the variables in x and a 2 , n 2 — over the 
coordinates in g(x). Let also I  =  { a 1 ,n 1, a2, n 2}, J  C I , Vj be the set of all strings of values 
for the variables in I  in which (strings) the value of each variable from I  \  J  is equal to 1, 
i.e. VJ =  {(s1p 1s2p2) : si =  1 if ai G I  \  J  and p i =  1 if ni G I  \  J ; si G Fn if ai G J  and
pi G Sn if ni G J ; i G {1 ,2}},

Fn ^  Fn be
n}, be the
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G 1  \  J , 
G J, i G { 1, 2},

and gJ (x) be the formula n J ( nJ ))). Particularly, for any a = {siPiS2P2 ) G V j , a 
formula g“(x) is defined too as g“(x) =  p 2 (gs2 (pl (xsi))). In fact, gJ (x) is a subformula 
of g1 (x) =  п2(g^2(п1 (x^1))) with the negation and perm utation operations from a subset 
J  C I . For example, if J  =  {o l ,n 2} , then n J = 1 ,  oJ  =  1, and gJ (x) =  n 2 (g(x^1)).

The formulas gJ (x) for all possible J  are given in the Table 1:

T a b l e  1
J 0 {^ i } {ni } {^2 } {n2} {^ i ,n i } {^ i ,^ 2 } {^ i ,n 2}

gJ (x) g (x) g(x^!) g(ni (x)) g^2 (x) n 2 (g(x)) g (n i(x^!)) g"2 (x"1) П2 (g(x"!))

{ni,^ 2 } {П!,П2} {^2 , ^ 2 } {ai, n i, ^ 2 } { a i,n i,n 2  }
g"2 (ni(x)) n 2 (g(ni (x))) n 2 (g"2(x)) g"2 ( n i ( x " 1)) n2(g(n i ( x"1)))

{ai,a2 ,n2} {ni,a2,n2} {ai, n i, a2, П2 }
n 2 (g"2 (x")) n 2 (g"2(ni(x))) n2(g"2 ( n i ( x " 1)))

To make distinction between signs of kinds gJ  (x) and g^2 (x) as well as between signs 
of kinds g“ (x) and gs2(x), we often write (g(x))^2 and (g(x))s2 instead of g^2 (x) and gs2(x)
respectively. So, gJ (x) =  n J (g(nJ (x^i )))^2 and g“ (x) =  p2(g(pl (xsi )))s2.

For any vector-columns a, o in F lf and a perm utation п =  (il i2 . . .  in ) G Sn , if c =  —o, 
T  =  (tkj ) is a perm utation m atrix of order n  over F2 where tkj =  1 ^  j  =  ik for all 
k, j  G { 1, 2, . . . ,  n } (we call it matrix of п), then a^ =  a 0  c and n(a) =  Ta. This allows us 
to introduce the more simple notation in which A  and D  are the matrices of perm utations п1 
and п2 respectively and b and d are the vector-columns —o l and —o2 respectively, to use 
the symbols of variables A, D, b, d instead of symbols of operations n l , п2, o l , o2 respectively 
in the sets I , J  as well as in the formulas for f  ( x ) , f - l (x) and to apply linear algebra 
methods in solving the equations y  =  f  (x) and x =  f - l (y) with regard to unknown key 
parameters. Further, the fact of such replacement is denoted by the sign ~ . For example, 
{n l , o l , o2} ~  {A, b, d} , g1 (x) =  п2(g(nl (x^i )))^2 ~  D (g(A (x 0 b)) 0 d). The formulas under 
consideration with symbols of perm utation and negation operations o l ,n l ,o 2,п 2 are said 
to be ones in combinatorial notation and the formulas where the operations are represented 
by symbols b,A ,d, D of matrices and vectors are formulas in algebraic notation.

All the formulas gJ (x) in algebraic notation are given in the Table 2:

T a b l e  2
J 0 {b} {A} {d} {D} {b,A} {b, d} {b,D}

gJ (x) g (x) g(x 0  b) g(Ax) g(x) 0  d Dg(x) g(A(x 0  b)) g(x 0  b) 0  d Dg(x 0  b)

{A, d} { A , D } { d , D } {b,A, d} {b,A,D}
g(Ax)  0  d Dg( Ax) D(g(x)  0  d) g( A( x  0  b)) 0  d Dg(A(x 0  b))

{b,d,D} {A, d,D} {b, A, d, D}
D(g(x 0  b) 0  d) D(g(Ax) 0  d) D(g(A(x 0  b)) 0  d)

2.3. P e r m u t a t i o n - n e g a t i o n  c o m p o s i t i o n s  
There are two kinds of composition for perm utation-negation operations — multiplicative 

and serial. We begin with the first one.

Multiplicative composition
For any subsets J, L C I , define it as

gJ L (x) =  nL(gJ ( n f lx 'f  ) ) r 'L.

1 1
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Particularly, this means th a t for any a = (S1P1S2P2) ^  Vj and k =  (r iq ir2q2) ^  the 
value g“ (x) is defined as

(x ) =  q2(ga(q i(xri )))r2, 

where ga(x) = p 2 (g(p1 (xsi)))s2, therefore

g“ (x ) =  q2 (P2 (g (Pi ((qi(x ri))s1 )))s2)r2.

By the definition, we should write (g^)^ and (g“)k instead of gJ  and g ^  respectively, 
but for simplicity we remove the parentheses.

Let bJ = - a J , bL = - a f , dJ = - a J , dL = - a ^ ,  and AJ , A L, D J , D L denote the matrices
Lof n J ,n f  ,n J , respectively. We have gJ 2 (x) =  gJ (x) 0  dL =  D J (g(AJ (x 0  bJ )) 0  dJ ) 0  d

and n L(x ^ i) =  AL(x 0  bL). Hence, gJ 2 (nL(x ^ i)) =  D J (g(AJ (AL(x 0  bL) 0  bJ )) 0  dJ ) 0  dL 
and

gJL(x) =  D L(D J (g(AJ (AL(x 0  bL) 0  bJ )) 0  dJ ) 0  dL).

Particularly,
g“k(x) =  D '(D (g(A (A '(x 0  b') 0  b)) 0  d) 0  d'),

where b =  —s i ,b' =  —r i ,d  =  —s2,d ' =  —r 2, and A ,A ',D ,D ' are the matrices of 
perm utations p i , qi ,p2, q2 respectively.

Serial composition
For the subsets J, L C I , it is defined as follows

gL(gJ (x)) =  nL(g(nL((gJ (x))^L)))^L =  nL(g(nL((nJJ(g(nJ(x^^ )))^J )^L)))^L =

=  D l (g(AL((D J (g(AJ (x 0  bJ )) 0  dJ )) 0  bL)) 0  dL),

and for the perm utation-negation operations a =  (s ip i s2p2) G VJ and k =  ( r iqi r 2q2) G — 
in the following way

gk (ga(x)) =  q2(g (q i((ga(x))ri )))r2 =  q2(g (q i((p2(g (p i (xS1 )))s2 )ri )))r2 =
=  D '(g(A '((D (g(A (x 0  b)) 0  d)) 0  b')) 0  d').

2.4. D e r i v e d  f u n c t i o n s
The order of operation performing in gJ (x) is determined by the parentheses and the 

following additional agreement: in a subformula g^(u), the value of g(u) is calculated 
before performing the operation a. So, the operations in gJ (x), including the function g, 
are performed in the order a J ,n J ,g ,a J ,n J . Under particular operations s i ,p i , s 2,p2 as 
possible values for variables a J ,n J , a J ,n J  respectively, for particular function g and a 
value a  of x, the value of gJ (a) is sequentially computed as follows: vi (a) =  , v2(a) =
=  p i (vi (a)), ѵз(а) =  g(v2(a)), и4(а) =  vS2(a), gJ (a) =  p 2(v4(a)). This defines a function 
f  : Fn ̂  Fn such th a t f  (x) =  p 2(v4(x)). By the definition, f  (x) is uniquely determined
by the function g(x) and negation and perm utation transformations of its variables and 
coordinates. For a =  (s i ,p i , s2,p2), we denote it g“(x) and call it a derived function 
(derived from g by the transform ation a). Thus, g“(x) =  p 2(gS2(pi (xS1))) =  p 2(g(pi (xS1 )))S2. 
The second of these expressions for g“(x) explicitly shows the order of applying operations 
in the process of computing g“(x). Schematically, the computation according to it can be 
expressed with the following chain:

x x S1 p i(x Sl) -0 g(p i(xSl)) gS2(pi(xSl)) g“(x)
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In every case when g(x) is a bijective vector Boolean function on Fn, so should be the 
function ga(x). Its inverse g“ (x) satisfies the identity relation g“ (g“(x)) =  x  and can be 
performed in the following way: if y = g“(x), then x =  g“ (y) =  [p-1(g- 1((P2 ^(у))*2))]S1. 
Schematically, the computation according to this formula can be expressed with the 
following chain:

у gs2 (Pi(xsi)) g(p i(xsi)) p i(x si) %  x Sl x.

Com putational complexities of function g(x) and its derived functions are of the same order. 
In particular, if g(x) is of a polynomial complexity, then g“(x) with known g and a is of a 
polynomial complexity too what we can not say about g“ .

3. E lG a m a l e n c ry p tio n  on  B o o lean  fu n c tio n s
We need to say th a t in reality we can construct on Boolean functions very many different 

variations of ElGamal encryption schemes which can differ each other in public and private 
keys definitions and in encryption and decryption equations. The following variation seems 
to have the most simple expression and insufficiently strong private key.

3.1. E n c r y p t i o n  s c h e m e  E 1
Parameters: n  is an integer, n  ^  2; g(x) =  g1(x)g2(x) . . . g n (x) is a bijective vector 

Boolean function with the coordinate functions g1(x ) , . . .  ,gn(x) specified in a constructive
way and computed with a polynomial (in n) time complexity, g : Fn — Fn; 0  =  
=  J, L C I  =  | a 1, n 1, a 2, п2}, where n 1,n 2 and a 1,a 2 are the symbols of variables with 
the values, respectively, of perm utation operations in Sn and of negation operations in Fn; 
a =  (S1P1S2P2) Er Vj  and g“(x) =  p2(gs2(P1(xSl))).

Public key is (g(x), g“(x)), private key is g“ (x), secret param eter is a.
Encryption: m  is a plaintext, m  E Fn; k is a randomization param eter, k =  ( r1,q 1, 

^2,^2) Er Vl ; y (m) =  gk(m) =  q2(gr2(q1(mri))), h(m) =  gk(m) 0  g“(m); (7 (m ),h(m )) is
the ciphertext.

Decryption: m  =  g“ (7 (m) 0  h(m)).
Proof that decryption works: g“ (7 (m) 0  h(m)) =  g“ (gk(m) 0  gk(m) 0  g“(m)) =

=  g“ (g“(m)) =  m.
3.2. E n c r y p t i o n  s c h e m e  E2

Public key is g“(x), private key is g“ ^(x), secret param eter is a.
Encryption: m  is a plaintext, m  E Fn; k is a randomization param eter, k =  ( r1,q 1, 

^2,^2) Er Vl ; 7 (m) =  g“ (m) =  q2(g“(q1(mri)))r2, h(m) =  g“ (m) 0  g“(m); (7 (m ),h(m )) is
the ciphertext.

Decryption: m  =  g“ (7 (m) 0  h(m)).
Proof that decryption works: g“ (7 (m) 0  h(m)) =  g“ (g“ (m) 0  g“ (m) 0  g“(m)) =

=  g“ (g“(m)) =  m.
3.3. E n c r y p t i o n  s c h e m e  E3

This variation is proposed by V. A. Roman'kov.
Public key is g“(x), private key is g“ (x), secret param eter is a.
Encryption: m  is a plaintext, m  E Fn; (k ,u) are randomization parameters, k =  ( r1,q 1, 

Г2, 52) Er Vl , u Er Fn; 7 =  g“(gk(u)), h =  gk(u) 0  m; (7 , h) is the ciphertext.
Decryption: m  =  g“ (7 ) 0  h.
Proof that decryption works: g“ (7 ) 0 h =  g“ (g“(gk(u))) 0 gk(u) 0 m  =  gk(u) 0 gk(u) 0  

0  m  =  m.
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3.4. E n c r y p t i o n  s c h e m e  E4
This variation is proposed by I. A. Pankratova.
Public key is ga(x), private key is g“ (x), secret param eter is a.
Encryption: m  is a plaintext, m  E F^; u is a randomization param eter, u Er  F^; y =  

=  ga(u), 5 = u 0  m; (7 , h) is the ciphertext.
Decryption: m  = g“ (7 ) 0  5.
Proof that decryption works: g“ (7 ) 0  5 =  g“ (ga(u)) 0  u 0  m  =  u 0  u 0  m  =  m.

4. E x a m p le
Here, we illustrate the ElGamal encryption on Boolean functions effectively represented 

in an analytical form (not by tables).
Let n  =  4, x  = x iX2X3X4, g : F^ ^  F^, g(x) =  gi(x)g2(x)g3(x)g4(x),

gi(x) =  xi 0  x2 0  x3 0  x4, g2(x) =  x ix 2 V x ix 2, g3(x) =  x4, g4(x) =  x2x3 V xix3,

g-1 : F4 ^  F2, g- i (x) =  g( (x)g2(x)g3(x)g4 (x). We have

g( (x) =  x 2x4 V x ix 3x4 V x ix 2x3x4 V x ix 2x3x4 V x ix 3x4, 
g2 (x) =  x 2x4 V x ix 3x4 V x ix 3x4 V x ix2x 3x4 V x ix 2x 3x4, 
g3(x) =  x ix 2x 3 V x ix2x 3 V x ix 2x3 V x ix 2x 3, g4(x) =  x 3.

Let also J  =  L  =  I , Vj  =  VL =  { (si,P i,S 2,P2) : P i,P 2 E S4; Si,S2 E Fi4};

a =  (s i,p i, S2,P2) E V j, pi =  2341, p 2 =  4123, Si =  1001, S2 =  0111; 
k =  (ri,q i,r2 ,q2) E Vl , qi =  4321, q2 =  3412, ri =  0001, Г2 =  1000.

We have tha t

g“-1(y)

x si =  x ix 2x 3x4, p i (xsi) =  x 2x 3x4x i , 

gs2(x) =  g l(x)g2(x)gз(x)g4(x), P2(gs2(x)) =  g4(x)g i(x)g2(x)g3(x); 
g“(x) =  P2(gs2 (pi(xs1))) =  (g4(x2 x3x4xi), Pi(x2x3 x4xi),g2(x2x3x4xi),g3(x2x3x4xi)) =

=  ((x3x4 V x2x4), - ( x 2 0  x3 0  x4 0  x i), (x2x3 V x2x3), (xi)); 

y =  УlУ2УзУ4, P - i(y ) =  У2УзУ4Уl, (P - i(y))S2 =  У2У3У4У1, 
p - i (x) =  x4x ix 2x3, (p - i (x))s1 =  x4x ix 2x 3;

[p-i (g- i ( (p - i(y))s2 ))]s1 =  [p - 1 (g - i ( y2y3y4yi))]s1 =  [p-i(gi (y2y3y4yi) ,g2 (У2УзУ4Уl), 
g3 (У2У3У4Уі ) , g4 (У2У3У4Уі ) ] =  [g4 (y2y3y4yi) , ^ 'i (У2У3У4Уі ) , ^'2 (У2У3У4Уі ) ,

g3(У2У3У4У1)] =  [У4, - ( УіУ3 V У1У2У4 V У1У2У3У4 V У1У2У3У4 V УlУ2У4),
- ( УіУ3 V У1У2У4 V У1У2У4 V УіУ2У3У4 V УlУ2УзУ4), У2У3У4 V У2У3У4 V У2У3У4 V У2У3У4]; 

xri =  x 1x 2x 3x4, q1(xr i) =  x4x 3x2x 1, gr2 (x) =  g1(x)g2(x)g3(x)g4 (x),

q2(gr2 (x)) =  g3(x)y4(x)g i(x)g2(x); 

gk (x ) =  У =  У1У2У3У4 =  q2(gr2 (q i(xri))) =
=  (g3(x4x3x2xi),g4(x4x3x2xi),gi(x4x3x2xi),g2(x4x3x2xi)) =

=  (xi, -(x2x3 V x2x4), x4 0  x3 0  x 2 0  x i , -(x3x4 V x3x4)); 

q - 1(y) =  У3У4У1У2, (q - 1(y))r2 =  УзУ4УlУ2, q - 1 (x) =  x4x 3x2x i , (q -1(x))ri =  x4x 3x2x i;
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(y) =  ))]ri =  [?Г1(у -1(узУ4УіУ2))]г1 =
=  [q r 1(y'i (УзУ4УіУ2) , g2 (УзУ4УіУ2) , g3 (УзУ4УіУ2) , g4 (УзУ4 У1У2)]ri =

=  [д'4 (УзУ4УіУ2 ) ,д 'з(УзУ4УіУ2) ,д '2 (УзУ4УіУ2 ) ,д'і (УзУ4 У1У2 )] =
=  [Уі, - ( УіУзУ4 V УіУзУ4 V УіУзУ4 V УіУзУ4) , - ( У2У4 V УіУ2Уз V УіУ2Уз V УіУ2УзУ4 V УіУ2УзУ4) ,

У2У4 V УіУ2Уз V УіУ2УзУ4 V УіУ2УзУ4 V УіУ2Уз];
к

ga (x) =  q2(g“(q!(xri )))r2 =  52(д“(х4ХзХ2Жі))Г2 =
=  ?2((ХіХ2 V ХіХз),-(X 4 0  Хз 0  X2 0  Хі), (х2Хз 0  Х2Хз),Х4)Г2 =
=  ?2((ХіХ2 V ХіХз),-(Х і 0  Х2 0  Хз 0  Х4), - ( х2Хз 0  Х2Хз),Х4) =

=  (Х2Хз V Х2Хз, Х4, ХіХ2 V ХіХз, - ( хі 0  Х2 0  Хз 0  Х4)).

Suppose, we want to encrypt the plaintext m  =  ХіХ2хзх4 =  1010, applying the 
scheme E1. We compute 7 (m) =  7 (1010) =  gk(1010) =  1110, ga(m) =  g“(1010) =  0101, 
h(m) =  h(1010) =  gk(1010) 0  g“(1010) =  1110 0  0101 =  1011 and obtain the ciphertext 
(y (m ),h(m )) =  (1110,1011). To decrypt this ciphertext, we compute ga (7 (m) 0  h(m)) =  
=  ga -1 (1110 0  1011) =  ga-1 (0101) =  1010 =  m.

Suppose, we also want to encrypt the same plaintext m  =  1010, applying the 
scheme E2. In this case, we compute 7 (m) =  ga (1010) =  1101, ga(m) =  0101, h(m) =  
=  g“k(1010) 0  g“(1010) =  1101 0  0101 =  1000 and obtain the ciphertext (7 (m ),h(m )) =
=  (1101,1000). To decrypt this ciphertext, we compute ga (7 (m) 0  h(m)) 
0  1000) =  ga-1 (0101) =  1010 =  m.

Now, by applying to m  =  1010 the encryption scheme E3 under u = 
gk(u) =  1011, 7 =  ga(gk(u)) =  1001, h =  gk(u) 0  m  =  0001, g“-1 (7 ) 0  h 
=  1010 =  m.

At last, by applying to m 
7 =  ga (u) =  1101, h =  u 0  m

1010 the encryption scheme E4 under u = 
0110, ga-1 (7 ) 0  h =  1100 0  0110 =  1010

ga (1101 0

1100, we obtain 
= 1011 0  0001 =

1100, we obtain 
m.

5. E lG a m a l s ig n a tu re  schem e on  B o o lean  fu n c tio n s
The ElGamal signature schemes are all randomized ones, as are all ElGamal encryption 

schemes. This means th a t there are many valid signatures for any given message, as are 
many ciphertexts for any given plaintext. It is known (see, for instance, [4]) there is a 
method by which an adversary can sign a random message m  without knowing the private 
key by choosing (7 , h) and m  simultaneously. Any adversary knowing a valid signature 
(7 , h) for a message m  can also sign various other messages [4]. Both of these methods 
for producing the valid forged signatures do not “enable an opponent to forge a signature 
on a message of his own choosing”. The ElGamal signature schemes on Boolean functions 
described in this paper below enable an adversary, knowing a valid signature (7 , h) for a 
message m, to produce valid forged signatures (7^,h') for the same message m  and do not 
seem to represent a threat to the security of our ELGamal signature schemes, as do not 
these methods to the security of the ElGamal signature schemes on groups.

Each of encryption schemes E1-E4 becomes a signature scheme with appendix after 
appointing keys and equations to play the proper roles in it. So we obtain the following 
ElGamal signature schemes on Boolean functions. In the description of them, the terms 
th a t are not explained once more have the former meanings.
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5.1. S i g n a t u r e  s c h e m e  S 1
Private key (for signing) is {g{x),a},  public key (for verifying) is g“ ^(x).
Signing: m  is a message, m  E Fif; 7 (m) =  gk(m), 5(m)  =  gk(m)  0  ga(m), к Er 

(y ( m) , 6 (m)) is the signature.
Verification: accept the signature iff g“ (7 (m) 0  5(m)) = m.

5.2. S i g n a t u r e  s c h e m e  S 2
Private key (for signing) is g“(x), public key (for verifying) is g“ ^(x), secret param eter 

is a.
Signing: m  is a message, m  E Ff; 7 (m) =  g“ (m), 6 (m) = g“ (m) 0  g“(m), к Er Vl; 

(7 ( m) , 6 (m)) is the signature.
Verification: accept the signature iff g“ (7 (m) 0  5(m)) = m.

5.3. S i g n a t u r e  s c h e m e  S3
Private key (for signing) is {g(x),a}, public key (for verifying) is g“ ^(x).
Signing: m  is a message, m  E Ff; к Er Vl , u Er  Ff; 7 =  g“(gk(u)), h =  gk(u) 0  ga(m);

(7 , h) is the signature.
Verification: accept the signature iff g“ (g“ (7 ) 0  h) =  m.

5.4. S i g n a t u r e  s c h e m e  S 4
Private key (for signing) is g“(x), public key (for verifying) is g“ ^(x), secret param eter 

is a.
Signing: m  is a message, m  E Ff; u Er Ff; 7 =  g“(u), h =  u 0  g“(m); (7 , h) is the 

signature.
Verification: accept the signature iff g“ (g“ (7 ) 0  h) =  m.

5.5. S i g n a t u r e  s c h e m e  S5
Private key (for signing) is g“(x), public key (for verifying) is g“ ^(x), secret param eter 

is a.
Signing: m  is a message, m  E Ff; u Er Ff; 7 =  u, h =  u 0 g“(m); (7 , h) is the signature.
Verification: accept the signature iff g“ (7 0  h) =  m.

C o n clu sio n
We should say tha t the paper doesn't provide a solution of a research problem. We have 

only described a new approach to constructing ElGamal encryption and signature schemes 
by using the algebra of bijective vector Boolean functions w ith the negation and perm utation 
operations on the sets of variables and coordinate functions in them. We are not really sure 
whether the given schemes are secure or not. Naturally this approach has begot quite a large 
number of new problems for a subsequent research. These problems are directly related to 
the cryptanalysis of new ElGamal cryptographic schemes described (or not yet) in the paper, 
to constructing ElGamal signature schemes on Boolean functions with message recovery, 
and to the development of the used algebra. Computational methods and estimates of their 
complexity are the most im portant subject in researching the last.
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