УДК 551.324

Отгонбаяр Дэмбэрэл

МОРФОМЕТРИЧЕСКАЯ И РЕСУРСНАЯ ХАРАКТЕРИСТИКА СОВРЕМЕННОГО ОЛЕДЕНЕНИЯ МОНГОЛЬСКОГО АЛТАЯ (ГОРНЫЙ УЗЕЛ ЦАМБАГАРАВ, ХРЕБТЫ МУНХХАЙРХАН И СУТАЙ)

Приведены результаты исследований современного оледенения горного узла Цамбагарав, хребтов Мунххайрхан и Сутай – крупных центров современного оледенения Монгольского Алтая. В трёх центрах оледенения автором определено 72 ледника общей площадью 112,33 км², которые относятся к 17 бассейнам.

Ключевые слова: современное оледенение; площадь ледников; морфологический тип; экспозиция.

На современном этапе климатической истории Земли особенную остроту, как в народно-хозяйственном, так и в научном плане, приобретает проблема определения объемов горных ледников, аккумулирующих в себе важнейший возобновляемый жизненный ресурс – пресную воду. В горах сконцентрированы значительные природные ресурсы, среди которых особую ценность представляют полезные ископаемые и запасы белого золота — воды. Поэтому актуальной задачей современной географической науки является оценка распределения запасов воды, аккумулированной в ледниках, их изменение в современных тенденциях климата и прогноз состояния при возможных климатических изменениях.

На региональном уровне в условиях Центральной Азии проблема оценки современных и прогнозных изменений оледенения имеет принципиальное значение по двум причинам:

- 1. Ледники являются яркими индикаторами реакции природной среды на изменения климата: повышения средней годовой температуры с интенсивностью менее 1,0°С за столетие оказалось достаточно, чтобы оледенение гор Средней Азии и Казахстана сократилось более чем на треть.
- 2. Не менее важно оценить, как современная деградация оледенения скажется на характеристиках речного стока и водных ресурсах. В условиях Центральной Азии, где темпы роста населения велики, а проблема водообеспечения населения и хозяйства особенно остра, это одна из более приоритетных задач [1].

По современным оценкам, на территории Алтае-Саянской горной области (включая и Монгольский Алтай) насчитывается около 2 340 ледников с общей площадью 1562 км². На территории России и Восточного Казахстана находятся 1 850 ледников (968 км²), Монголии $-120 (317 \text{ кm}^2)$, Китая $-397 (277 \text{ км}^2)$ [2].

Монгольский Алтай является перспективной территорией для гляциологического мониторинга. Современное оледенение Монгольского Алтая распространяется от горного узла Табын-богдо на юге до хребта Сутай между координатами 46°25'—49°56' с.ш и 87°44'—92°56' в.д.

Горный узел Цамбагарав, хребты Сутай и Мунххайрхан являются крупными центрами современного оледенения Монгольского Алтая.

В процессе изучения современного оледенения хребтов автором был выполнен сравнительный анализ данных мультиканальных космических снимков «Landsat–7, ETM+» (август 2002, 2006, 2007, 2008 гг.) и топографических карт масштаба 1:100000 (1945 и 1970 гг.). Обработка снимков и тематическое дешифрование ледников проводились в среде ГИС пакета MICRODEM/Terra Base-II V.10.

В ходе данной проделанной работы автором выявлено в трёх центрах современного оледенения Монгольского Алтая 72 ледника общей площадью 112,33 км², которые относятся к 17 бассейнам. Это составляет 12,4% от общего их числа и 19,2% от общей площади ледников Монгольского Алтая.

Морфологические типы ледников. В трех ледниковых узлах встречаются следующие морфологические типы ледников: каровые, карово-долинные, карововисячие, висячие, плосковершинные, долинные и висяче-каровые. Наиболее распространенными по числу являются ледники висячего (21), карово-долинного (18) и плосковершинного (14) типов (табл. 1). Они составляют 73,4% от общего числа ледников (78,2% от общей площади оледенения региона).

Таблица 1

Морфологические типы ледников

		Горнь	ые хребты		Горный узел		Всего		
Тип ледника	C	Сутай		Мунххайрхан		Цамбагарав		Bcero	
	1	2	1	2	1	2	1	2	
Каровый	1	0,42	3	3,74	2	2,05	6	6,21	
Карово-долинный	2	2,5	2	3,44	14	25,46	18	31,40	
Карово-висячий	1	0,46	1	0,13	1	0,64	3	1,23	
Висячий	5	0,65	2	13,93	14	6,16	21	20,74	
Плосковершинный	3	7,27	6	2,78	5	25,65	14	35,70	
Долинный			3	2,38	3	9,77	6	12,15	
Висяче-каровый	3	1,27	_	-	1	3,44	4	4,71	
Итого	15	12,57	17	26,58	40	73,17	72	112,3	

Примечание. 1 – число ледников; 2 – площадь ледников, κm^2 .

По площади первое место занимают ледники плоских вершин. Однако их всего 14 (19,5% от общего числа ледников всех хребтов). Ледники карового типа (6) по общей площади оледенения составляют 5,5%, однако вместе с переходными типами, к которым относятся карово-долинные и карово-висячие ледники, они составляют 17,5% от общего числа ледников и 18,5% от общей площади оледенения. В меньшей степени распространены ледники висяче-каровые и карово-висячие. Их всего 7 (5,28% от общей площади оледнения).

Экспозиция ледников. Наибольшее число ледников приурочено к склонам северной и северо-восточной экспозиции, при этом наибольшая площадь оледенения приходится на ледники северо-восточной экспозиции.

Наименьшее число ледников располагается на склонах юго-восточной и юго-западной экспозиций. Несмотря на большое количество ледников северо-восточной и северной экспозиции, их площадь составляет лишь $60,6~{\rm km}^2$, или 54,1% от общего числа ледников, т.е. лишь немного превышает площадь ледников южных и юго-восточных экспозиций (табл. 2).

Длина ледников в хребте Сутай в среднем составляет 1196 м, в хребте Мунххайрхан — 1 686 м, для горного узла Цамбагарав — 2 060 м. Наибольшая длина характерна для долинных и карово-долинных ледников, расположенных выше 4 000 м. Максимальная длина у ледника № 13 карово-долинного типа (на высоте 4 715 м) и ледника № 11 долинного типа (4 597 м) горного узла Цамбагарав [2].

Распределение ледников по экспозициям склонов и хребтам

Таблица 2

Экспозиция		Горные хр	ребты		F		D	
	Сутай		Мунххайрхан		Горный узел Цамбагарав		Всего	
	1	2	1	2	1	2	1	2
С	10	6,23	13	24,13	9	25,39	32	55,76
CB	-	_	-	-	7	4,82	7	4,82
В	-	_	-	-	5	5,51	5	5,51
ЮВ	1	0,42	2	1	3	4,80	6	6,22
Ю	2	5,71	1	0,32	9	21,60	12	27,63
ЮЗ	_	_	-	_	3	7,28	3	7,28
3	_	_	-	_	2	0,74	2	0,74
C3	2	0,21	1	1,13	2	3,04	5	4,38
Итого	15	12,57	17	26,58	40	73,18	72	112,3

Примечание. 1 – число ледников; 2 – площадь ледников, км².

Длина ледников в хребте Сутай в среднем 1 196 м, хребте Мунххайрхан – 1 686 м, для горного узла Цамбагарав – 2 060 м. Наибольшая длина характерна для долинных и карово-долинных ледников, расположенных выше 4 000 м.

Максимальная длина у ледника № 13 кароводолинного типа (4 715 м) и ледника № 11 долинного типа (4 597 м) горного узла Цамбагарав.

Объем и мощность ледников уменьшаются с северо-востока на юго-восток. В горном узле Цамбагарав объем ледников составляет $3,03~{\rm km}^3$ при мощности $51,3~{\rm m}$, в хребте Мунххайрхан – $1,38~{\rm km}^3$ и толщина ледников $45,3~{\rm m}$, в хребте Сутай – $0,6~{\rm km}^3$ и $41,1~{\rm m}$ соответственно (рис. 1).

Вертикальное распределение ледников для разных хребтов имеет свои особенности (табл. 3). В хребте Сутай зона максимальной площади оледенения лежит в пределах 3 900–4 150 м (42,5% от общей площади оледенения), это выше положения фирновой границы (H_{φ}) , расположенной здесь на высоте 3 800 м. Максимум площади ледников находится выше области питания.

Второй максимум расположен в пределах высот 3 750–3 900 м (27,4% от общей площади ледников) на выположенных фирновых полях перевальных седловин и плоских вершин водораздельных гребней. Третий максимум приходится на высотный интервал 3 600–3 750 м (13,5% от общей площади ледников).

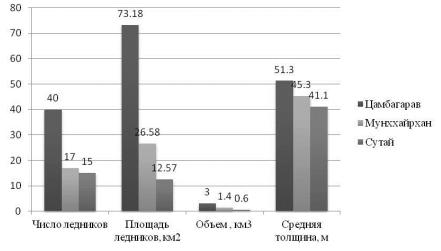


Рис. 1. Основные сведения о современном оледенении хребтов

Распределение площадей ледников различных хребтов по высотным зонам

Интервал высот, м	Хр. Сутай км² %		Xp. Мунххайрхан км ² %		Интеррет ризел м	Горный узел Цамбагарав	
3 150–3 300	0.008	0,6	км² 0.28	1,05	Интервал высот, м	KM ²	%
3 300–3 450	0,53	4,2	2,33	8,77	До 3 000	0,07	0,1
3 450–3 600	1,13	8,9	3,32	12,49	3 000–3 250	2,38	3,25
3 600–3 750	1,7	13,5	5,77	21,71	3 250–3 500	11,64	15,91
3 750–3 900	3,4	27,4	8,77	32,9	3 500–3 750	28,84	39,41
3 900-4 150	5,3	42,5	6,11	22,99	3 750-4 000	25,15	34,37
4 150-4 300	0,43	3,4	_	-	4 000 и выше	5,11	6,98
Итого	12,57	100	26,58	100	Итого	73,18	100,00

В хребте Мунххайрхан основная часть площади ледников находится в высотной зоне 3 750–3 900 м, на нее приходится 32,9% от общей площади ледников [3].

Для горного узла Цамбагарав основная площадь ледников находится в высотном диапазоне 3 500—3 750 м (39,41% от общей площади ледников горного узла). Эта зона совпадает с фирновой границей (H_{φ}) – (3 692 м), т.е. максимум площади ледников находится в области питания. Второй максимум распложен на высоте 3 750–4 000 м (34,37% от общей площади оледенения горного узла). Таким образом, ледники горных хребтов характеризуются сложным и своеобразным распределением площади поверхности.

В целом в Монгольском Алтае с северо-востока на юг и юго-запад число, площадь, объем, мощность и длина ледников уменьшаются.

Это объясняется тем, что абсолютные высоты хребтов падают с северо-запада на юго-восток и одновременно усиливается влияние расположенной на юге пустыни Гоби.

Характерной чертой оледенения этих хребтов, в отличие от всего оледенения Алтая, является преобладание, как по площади, так и по количеству, плосковершинных и куполовидных ледников. Более 80% всей площади оледенения располагается на северной или северо-восточной экспозиции.

ЛИТЕРАТУРА

- 1. Котляков В.М., Северский И.В. Ледники Центральной Азии: современное состояние, изменения, возможное влияние на водные ресурсы // Цифры из трудов Регионального семинара по оценке снежно-ледовых и водных ресурсов Азии. Казахстан, Алматы, 2006.
- 2. Окишев П.А., Нарожный Ю.К. Рельеф и оледенение Русского Алтая // Вопросы географии Сибири. 2006. Вып. 26.
- 3. Отгонбаяр Д. Современное оледенение горного узла Цамбагарав (Монгольского Алтая) // Вестник Томского государственного университета. 2011. № 348.
- 4. *Отвонбаяр Д.* Каталогизация ледников и выявление особенностей современного оледенения хребта Мунххайрхан (Монгольский Алтай) // Мир науки, культуры, образования. 2011. № 5 (30).

Статья представлена научной редакцией «Науки о Земле» 1 ноября 2012 г.