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COMPUTATIONAL ASPECTS OF PROBABILISTIC EXTENSIONS

In this article we propose a new approach to computing of functions with random arguments. Approach based on the
idea of dimension reduction by to calculating some integrals and the application of numerical probability analysis.
We apply one of the basic concepts of numerical probabilistic analysis as the probabilistic extension to computing
a function with random arguments. To implement this technique, a new method based on parallel recursive calcula-
tions is proposed. Numerical examples are presented demonstrating the effectiveness of the proposed approach.
Keywords: computational probabilistic analysis; probabilistic extensions; non-Monte Carlo methods; random boundary
value problem.

Problems of modelling can be reduced to the numerical analysis of functions [1].
2= f(X,Xy5.00X,)-
Let (x,...x,) be a system of continuous random variables with joint probability density function

p(x,....x,) and random variable z is a function f(x;,...,x,) . Consider main methods to find the distribution

of random variable z.
These are to use the cumulative distribution function

F(y) :P(f(xla---axn) Sy)
and the probability z <y is determined by the formula

P(z<y)= IQ px,..x,)dx, ..dx,, @
where Q ={(x,...x,)| f(x,...x,) < y}. Further, the probability density function f of random variable z is

defined as the derivative [2]

1=

In the case of the monotone function f(x), the distribution density f of the random variable z is de-
fined as [2] as follows:
f(y)=T(F N IET) W), )
where f ™ is the inverse function of f .

Note that the calculation of the integral (1) and the use of the formula (2) in some cases is rather diffi-
cult. Moreover, one of the reasons for the emergence of the Monte Carlo method was the need to calculate
integrals of the form (1) in the case of large values of n. Thus, the Monte Carlo method is often the only way
to calculate the probability density function f of a random variable z. Monte Carlo method is a powerful ap-
proach, but it has some serious shortcomings, first of all, this is an extremely low rate of convergence.

Non-Monte Carlo methods have been developed since the 1960s. A major non-Monte Carlo approach
is interval analysis. However, interval analysis computing only to the boundaries of random processes, with-
out examining their internal distributions.

An important special case is operations on independent random variables. In the papers [3—6], various
approaches for numerical operations on densities of random variables are considered.

In our work, we develop a technique that uses Computational Probabilistic Analysis (CPA) to solve
various problems with stochastic data uncertainty [7-9].
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The basis of computational probabilistic analysis is numerical operations on probability density func-
tions of the random values. These are operations “+7, “—7, “.” /7 “f ”, “max”, “min”, as well as binary
relations “<”,“>" and some others. The numerical operations of the piecewise polynomial function arithme-
tic constitute the major component of CPA. The use of CPA for these problems is more effective than the
Monte Carlo method in a thousand times.

Using the arithmetic of probability density functions and probabilistic extensions, we can construct
numerical methods that enable us solving systems of linear and nonlinear algebraic equations with random
parameter [7, 8].

We will use piecewise polynomial models to represent probability density functions [10—12]:

— piecewise constant functions (histograms);

— piecewise linear functions (frequency polygons);

— piecewise polynomial functions (splines).

1. Probabilistic extensions

One of the most important problems that NPA deals with is to construct probability density functions
of random variables.

Let z be a function f(x,...x,)
z=f(x,.00X,)
Definition. By probabilistic extension f (&, X,,..., X,) of the function f , we mean a probability densi-
ty function z of the random variable z
2(8) = F(&, X, X,)
Definition. Support of the probability density functions f will be called the set
supp(f)={x] f(x)>0}.
One possible way to estimate the probability density z of a random variable z
z=f(x,..0X,) (©)
is the Monte Carlo method [13]. For these purposes a random vector (x|,...,x') with joint probability density
function p(x,,...,x,) is generated. Further calculated z' = f(x;,...,x!),i =1..., N . Using the histogram meth-
od for z', we can construct an estimate of the probability density function z.
We study the properties of the probability density z. Build the grid
{z,,2,,...2, }esupp(z)
and calculate the number n, of sample points falling in each segment z,_,,z . It is known that histograms

converge to the probability density function of the mean integral value
n

p=y =], 2(9de

Build the grid {t,.t,,...t,}=supp(x,) and calculate the number m; of sample points falling in each

segment t, .t .

Consider only those random vectors (x},....x,) for such (x € (t;_,,t;). Number such vectors is equal

exactly m;. If v, is the number of sample points falling in each segment z, ;,z,, then
n=>yv,
i
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and

p =3 Ve
PENT ZJ:Nm

Going to the limitat N — o
m;
xi(t) = W
Further, let for any t e supp x, we can construct a probabilistic extension f(-,z,X2,-.- Xn)
v
L& (& X,, X).
i
Increasing the dimension of the grids and going to the limit, we obtain
FE)= "X () F (&1, Xy X, )l @
Thus proven Theorem.
Theorem 1. Let f (&, X,..,X,) be probabilistic extensions of function f(x,,x,,...,x,) and for each

real t function f(&,z, X,,..., X,) be probabilistic extensions of the function f'(¢,x,,....x,) . Then

FE X X) = [ X0 F (6ot X X, )l (5)

Corollary. Theorem 1 infers the possibility of recursive computations for the general form of proba-
bility extensions and reduction to the calculation of the one-dimensional case.

Let us consider the computing of the integral (5). For simplicity, we represent (5) as a numerical quad-
rature

:l Xl (t) f (éata X25~-'5 Xn)dt ~ ZYI Xl(tl) f (é:tla X27'~~: Xn) '
X1 -1

Further, for the computing f (&7, X,,..., X,) we can also use numerical quadratures and so on. In gen-
eral, it is NP-hard problem with actual parallelization.

Fig. 1. The tree of the parallel recursive programming
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In Fig. 1 we are shown the tree of the parallel recursive organization of the computational process.
Thus, on the lower layer, it is necessary to computing the probabilistic extensions only for one variable. Note
that all computations on each layer are independent and can be computed simultaneously.

2. One-dimensional case

Consider the procedure for computing the probabilistic extensions for the one-dimensional case. Let
there be given a functional dependence
z=f(x),
where x is a random variable. Let x be the probability density function of a random variable x with support
[x,x]. Further {r:(z) e[x,x]|i=1...n} are the roots of the equation z= f (x).
Following the main method (1) it is easy to construct a generalization of the expression (2). We can
represent probabilistic extensions f (-,x) of function f(x) in the form

5 X(r
fex=3 e
i1 | T ()]
Example 1. As an example, consider the construction of a probabilistic extensions function
f =ax’ +bx,a>0,b>0,

x is random variable distributed on [0,2] by a triangular law

X(&):{ £ ifee[0)]),

2-¢ ifEe[lL2].
Further
V4az +b% +b Vdaz+b® -b
hz)=——,n(@)=———.
2a 2a
2 —
are roots z = f (r,) . Choose a positive root r(g) =r, (&) = %bb, and
a

[ax? +bx] = 2ax +b = +/4az + b,
f(&x) = x(r(8))/ J4ag +b*.

Finally

Put a=1and b=0
1/2 if £€[0,1),

f(iax)z{l/@_l/z if £<[14]

2.1. Numerical approach

Consider a numerical approach to construct a probabilistic extensions f of function f(x). For these
purposes, we construct in the support [x,x] of the probability density function x a grid
£ g e[x,x],i =0,1,2...n} and compute {z, = f (,),i =0,1,2...n}. Next we set

fz (Zi) = Xgéi)
[(F7(&)|
and using (z;, f,(z;)) we construct a piecewise polynomial interpolation.
So, for Example 1. the support is [0,2], & =i/10,i=0,1,..,20. With a=1 b=0 we get

(z./.(2)) Z((i/lO)z x(i/10)

" i/5

), i=0,1..,20.
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Fig. 2. Probabilistic extensions f (-, x)

The Fig. 2 shows the probability density function f(-,x) from Example 1. Unlike the general ap-
proach, there is no need to find the roots of the equation.

3. Two dimensional case

Let (x,y) be a system of continuous random variables with joint probability density function p(x,y)
and the random variable z is a function f(x,y)
z=1(xy).
Need to find probability density function the random variable z. Define
Q, ={(xy)Iz>f(xy)}
and cdf F, the random variable z

F, =], p(x.y)dxdy

probability density function of z
d

f,=—F,.
dz
Consequently
4 —ij' p(x, y)dxdy =
dz * dzle.
[ PO y)dxdy [ p(x,y)dxdy
= lim —= : =
dz—0 dz
[ P y)dxdy
= lim —==—= .
dz—0 dz
Assuming that dx =0 then
dz=f'dy
and
dS =dxdy =dxdz/| ' |.
Finally get
t@)=] _POGY) gy
L (GY)]
where

I, ={(xY)1z2= 1 y)}={(xy())}
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Let
p(t. y(©)

RN (S()]
be probabilistic extensions of f(t,y). Thus, the calculation of the probabilistic extension f, is reduced to
the calculation of the integral of probabilistic extensions f (t,y) .

Example 2. Consider the construction of a probabilistic extension for the function

=Xy +xy’.
Let t be real, put y =t and a probabilistic extension for the function

feh=

z, = Xt + xt®,

2:(&,1) = x(n(8)) / VAt +t°,

where n(&) = (\/4t§ +t* —b)/(2t).

Thus, the probabilistic extension for z can be represented as

22) =] yoz et =] yoxme)/ Jae . ©)
4. Random Boundary value Problem

Consider using probabilistic extensions to calculate solutions Random Boundary value Problem [14]
Lu=-pu”"+qu=f(x), xe(0,1), (7
with boundary conditions
u(0)=0, u@ =0.
where p>0, >0, p, q are independent random variables.
Let @, ={x =ih,i=12,..,N-1,h=1/N} be grid and
%mui = f(x), i=12,..,N -1.

is difference scheme. [_p,_p] , [g,a] are supports of p, g. Generate grids

I-huih =-p

®, ={pP=p<p <..<Pyg = p} and 0, ={¢,=9<¢,<..<q, =§}.
Solve numerically KL problems
—pk%wui = f(x),i=12,..,N 1.

Thus we get an array of solutions u,, =u,(p,,q,). Consider building probability density functions
for u,. For these purposes, we construct Hermitian cubic splines s,(p), /=0,1..,10 using the values
u; (py»9,) - Infig. 3 they are shown in solid line. Further for some & we find the roots p,

s(p)=¢ 1=01...,10.

The values of u, (&) are computed using numerical quadratures, for example, Simpson quadratures

u (&) = hZ VA0 PP/ S'(P)-

In fig. 3 line of integration mark = ‘0’. Note, Simpson quadratures and cubic splines have O(h*) accuracy.

Numerical experiments with K, L = 10 showed good agreement with the Monte Carlo method with the
number of samples ~ 10°. Thus, in this example, the proposed method turned out to be more efficient than
Monte Carlo ~ 10* times.
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Fig. 3. Construction of probabilistic extensions for ui, 1 are splines, 2 is a line of integration

Remark. The main computational costs are spent on building the set u,, ~ O(KLN). Computational
costs building of the probability extension of u; is O(m). Therefore, once you have u,, , you can compute rel-
atively quickly u; for different p, g.

Conclusion

The proposed approach makes it possible to solve the problem of computing the probability density
function in the modeling processes with random input data. For these purposes we propose using a parallel-
recursive organization of the computational process. Thus, the important problem of computing probability
extensions can be solved within parallel recursive programming. This opens multifold possibilities for studying
various models with random input data. Fast and accurate calculations are based on the properties of numeri-
cal arithmetic procedures over piecewise polynomial models developed within the framework of computa-
tional probabilistic analysis.
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B craree mpemyaraeTcss HOBBIM MOAXOM K BBIYMCICHUIO (YHKIMHA CO CIy4aliHBIMH apryMeHTamHu. [loaxox ocHOBaH Ha Hiee
YMEHBIICHNS] Pa3MEPHOCTH (DYHKIMH IIyTEM BBIYMCIICHUS OIpeeIeHHBIX HHTEIPAJIOB U UCIIOIB30BaHMs BEIMHUCIUTEILHOTO BEPOST-
HOCTHOTO aHanu3a. [IpuMeHseTcst 0JJHO M3 OCHOBHBIX MOHATHH BBIYHCIUTENHFHOTO BEPOSITHOCTHOTO aHAIHM3a — BEPOSATHOCTHOE pac-
IIMPEHHe JUIS BEIYHUCICHUS] (QYHKIMU CO CIIydalHBIMHU apryMeHTamy. sl peai3aliy 3TOro MeToja IpeyiaraeTcs cnocod, OCHO-
BaHHBII Ha MapaIeNbHBIX PEKYPCHBHBIX BBIYHCICHUSX. [IpHBeneHBI YHCICHHBIE TPHMEPHI, AEMOHCTPUPYIONIHE 3((GEKTHBHOCTD
MPEIOKEHHOT0 MOAX0a.

KittoueBble cioBa: BRIYMCIUTENbHBIN BEPOSITHOCTHBIM aHAIN3; BEPOSATHOCTHBIE paciiupenus; He MonTe-Kapiao meronsr; ciyyaiiHbie
KpaeBbIE 3a/1auu.
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