2008

Теоретические основы прикладной дискретной математики

Nº 1(1)

DOI 10.17223/20710410/1/3 УДК 519.1

коды, композиции и решетки

А.М. Кутьин

Сибирский федеральный университет, г. Красноярск

E-mail: maglinetc@mail.ru

Обсуждаются вопросы теории кодирования, связанные с ее центральной проблемой. Рассмотрена основная модель теории кодирования и криптографии – дистрибутивная решетка, исследованы ее связи с композициями чисел и c-матроидами. Построены решеточные коды. Указаны границы кодов в метрике Хемминга.

Ключевые слова: код, композиции чисел, решетка, метрика, s-множество, с-матроид

Теория кодирования и криптографии призвана решить относящиеся к ней задачи общей проблемы безошибочной передачи данных с обеспечением их защиты от несанкционированного доступа. Одной из теоретических основ их решения, как показано ниже, является теория решеток и s-множеств [1-7].

Напомним, что решетка как алгебра обозначается обычно $L = \langle M; +, \cdot \rangle$ или $L = \langle M; \vee, \wedge \rangle$, $M \neq \emptyset$.

Центральная проблема теории кодирования имеет немалое число формулировок. Приведем лишь две из них. При заданных n и d найти A(n,d), равное максимальному числу кодовых слов в равномерном (n,M,d)-коде, где M — объем кода, см. [8]. Другая формулировка [9]: найти равномерные коды с большим R=k/n для эффективности, так как R — скорость, и большим d для надежности: чем больше d, тем больше ошибок можно исправить (здесь d — число информационных символов). Мы предпочитаем следующую формулировку.

Найти аналитическую формулу для функции A(m, l, d), где A(m, l, d) — максимальная мощность кодов из слов v равной длины l(v) = n над алфавитом мощности m с расстоянием ρ между кодовыми словами не менее наперёд заданного d; в отсутствие точной формулы найти неулучшаемые верхние и нижние границы.

1. Кодирование и *L*-кодирование

Рассмотрим сначала равномерные коды (кратко Р-коды). Возьмем алфавит $A = \{a_0, ..., a_m\}$ и построим множество W всех слов v равной длины l(v) = n над A; получаем простой равномерный код (ПРК, или ПР-код) над A. Слово $u = x_1 ... x_n$ можно рассматривать и как вектор $u = \langle x_1, ..., x_n \rangle$ конечного пространства, $x_i \in A$, i = 1, ..., n. Поэтому можно говорить о координатах или компонентах в векторах (словах) и символах в словах (векторах). Исходным фактом теории L-кодирования, который объясняет ее название, является следующая теорема 1.

Теорема 1. Любое множество W слов v равной длины l(v) = n, в частности простой равномерный код, над линейно упорядоченным алфавитом $A = \{a_0, ..., a_m\}$ объема m+1 при векторном отношении порядка \leq на W, индуцированном порядком на A, является конечной дистрибутивной самодвойственной решеткой $L_A = \langle W, \leq \rangle$, порожденной c-элементами вида $c_{ij} = (a_0, ..., a_0, a_j, a_0, ..., a_0)$, где a_j стоит на j-м месте. При этом:

- 1) L_A градуированная решетка, число уровней которой равно nm+1, представляет собой прямое произведение цепей C_i равной длины $l(C_i)$ числом n: $L_A = \Pi_1{}^n C_i$, каждая из которых состоит только из c-элементов указанного вида, а всякий c-элемент принадлежит соответствующей цепи C_i , и только ей;
- 2) число n всех цепей C_i равно n = l(v) длине слова v (равносильно длине кода), а длина $l(C_i)$ любой цепи C_i равна $m = l(C_i)$, где m+1=|A| объем алфавита A, причем $l(L_A) = l(\Pi_1{}^nC_i) = \Sigma_1{}^n l(C_i) = nm$;
- 3) число всех c-элементов равно nm+1, причем $c_{ik} \wedge c_{jt} = \hat{0}$ при $i \neq j$, а любое слово v Р-кода представимо единственной суммой $v = \vee c_{km}$ c-элементов, в этом слове содержащихся: $v \geq c_{km}$ для всех c_{km} из суммы $\vee c_{km}$;
- 4) множество всех c-элементов есть у-подмножество в решетке L_A всех \vee -неприводимых элементов из L_A , являющееся \wedge -полурешеткой ранга m и c-матроидом, а при добавлении к ним всех элементов из L_A рангов, соответствующих рангам c-элементов, оказывается также и суперматроидом.

Обратно, любая конечная решетка L, разложимая в прямое произведение цепей $L = \Pi_1{}^n C_i$ равной длины m, являясь самодвойственной дистрибутивной решеткой, порожденной ∨-неприводимыми элементами, изоморфна решетке L_A слов равной длины n над алфавитом $A = \{0, 1, ..., m\}$. ■

В этом контексте удобно L_A обозначать через $L_{\Pi PK}(m, n)$, m+1=|A| или через $L_{\Pi PK}(n)$ при фиксированном m, а в c_{ik} удалить индекс k, так что далее c_i обозначает просто некоторый c-элемент.

Определим ранг-метрику ρ_r : $\rho_r(v,u) = r(v \lor u) - r(v \lor u)$, где $v, u \in L_A$, r(x) — ранговая функция на L_A (по сути, r(x) — это высота элемента x в L_A), и H-метрику ρ_H : пусть $w_H(x)$ — вес Хемминга вектора x, тогда $\rho_H(x,y) = w_H(x-y)$ выражает число позиций, в которых отличаются векторы x и y; значит, в любой L_A всегда $\rho_H \le n$, где n — длина p-кода, а $p_H = n$ — максимальное значение функции p.

Следствие 1. Группа автоморфизмов решетки $L_{\Pi PK}(n)$ изоморфна симметрической группе S_n перестановок, где n- длина кода над односортным алфавитом A, а используя перестановки из S_n и/или из симметрической группы S(A) перестановок на A, и/или элементы из группы антиизоморфизмов решетки $L_{\Pi PK}(n)$, можно все слова P-кода преобразовать в другие, тем самым шифруя закодированное сообщение.

Решетка L_A при любом алфавите A допускает ранг-метрику ρ_r и H-метрику ρ_H . Пара $\langle L_A, \rho_r \rangle$, как и пара $\langle L_A, \rho_H \rangle$, является дискретным метрическим пространством при любом алфавите A. ■

Теорема 1 позволяет изучать коды независимо от их происхождения: созданы ли они над полями, или другими алгебрами, или являются геометрическими кодами и т.д. Например, на рис. 1 представлен ПРК над кольцом классов вычетов по модулю 3, а на рис. 2 в [1] – ПРК над симметрической полугруппой перестановок S_n .

Тем самым теория L-кодирования инвариантна относительно источников происхождения кодов, и одновременно она позволяет использовать все факты, полученные иным путем, так как все, что определено и доказано для множества слов W равной длины над любым алфавитом A и его подмножества кодовых слов, конечно же, определено и доказано для L_A . Поэтому здесь и не приведены известные факты теории кодирования, кроме тех, что понадобятся далее для целей изложения.

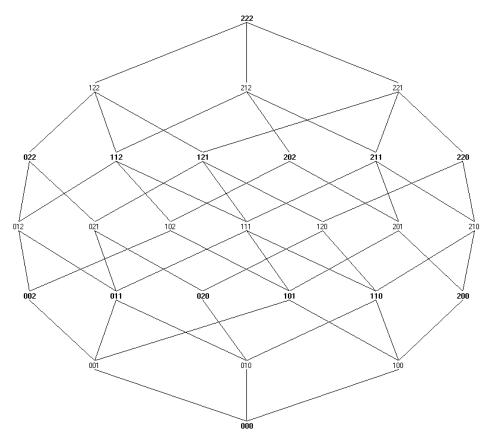


Рис. 1. Решётка слов длины 3 над алфавитом $A = \{0, 1, 2\}$. Слова кода кусочно-постоянного веса (либо 6, либо 4, либо 2, либо 0) с минимальным кодовым расстоянием $d_0 = 2$ выделены

Как видим, при $A=\{0,1\}$ получаем булеву решетку, называемую в случае двоичных Р-кодов еще и n-мерным кубом, так что $L_{\Pi P K}(m,n)$ можно назвать n-мерным параллелепипедом, так как цепи C_i в общем случае можно брать различной длины, см. [1]. Булеву подрешетку двоичного ПР-кода с 2^3 словами длины 3 над алфавитом $A=\{0,1\}$ с наименьшим в ней элементом-словом 000 и наибольшим в ней элементом-словом 111 см. на рис. 1, так что и в общем случае (при соблюдении естественного условия на длины кодов) вложение $A_1 \subseteq A_2$ алфавита A_1 в A_2 влечет вложение кода длины n над a_1 в код длины a_2 к a_2 0, в частности, при a_3 1 ПР-код длины a_4 2 влечет вложение кода длины a_4 3 в код длины a_4 4 в код длины a_4 6 в ней элементом-словом a_4 6 есть подрешетка с наименьшим в ней элементом-словом a_4 7 на подрешетка есть интервал a_4 8 на подрешетка есть интервал a_4 9 на подрешетка есть интервал на подрешетка

Решетка на рис. 1 – это одновременно

- решетка композиций чисел от 0 до nm = 9 с ограничениями: 1) все $a_i \le m$ в сумме $\sum a_i = j$, здесь j это j-уровень, $0 \le j \le nm$ (соответственно $3 \le j \le nm$); 2) число слагаемых в $\sum a_i = j$ равно n;
- решетка конечного линейного векторного пространства размерности 3, оси которого и есть цепи C_i , i = 1, 2, 3;
- решетка кольца (над кольцом классов вычетов по модулю 3) с покомпонентными сложением и умножением:
- решетка делимости, называемая также решеткой НОД-НОК или же решеткой упорядоченных разложений в произведение степеней простых чисел p_i^{ki} , так как компоненты элементов решетки, изображенные на рис. 1, можно интерпретировать как показатели степеней k_i этих чисел;
 - решетка всех размещений с повторениями, так что их число в данном случае равно $m^n = 3^3 = 27$.

Ясно, что любая решетка $L_{\Pi PK}(m,n)$ обладает всеми только что перечисленными свойствами (указанные в примере конкретные значения n и m относятся именно к нему, а в общем случае их из свойств нужно, конечно, удалить).

P-код, образуя у-подмножество в решетке $L_{\Pi PK}(m,n)$, не образует, вообще говоря, подрешетку в ней. Однако верно

Предложение 1. Решеточные коды, т.е. коды, являющиеся подрешетками решетки $L_{\Pi PK}(n)$, существуют, более того, существуют корректирующие решеточные коды.

Доказательство. Простые решеточные коды существуют – ими являются все ПРК. Покажем, что существуют корректирующие решеточные коды в любой $L_{\Pi PK}(m,n)$ с ранг-метрикой. Возьмем лишь те c-элементы c_i, c_j решетки $L_{\Pi PK}(n)$, которые находятся друг от друга на расстоянии $\rho_r(c_i, c_j) \ge d_0$ — наименьшего подходящего кодового расстояния. Найдем все элементы вида $v_k = \lor c_i$, затем все элементы вида $u_t = \land v_k$, потом вида $w_s = \lor u_t$ и т.д. По окончании построения множества всех таких элементов получим решеточный Р-код. В этом Р-коде для любых его кодовых слов $v = \lor c_i$ и $u = \lor c_j$ выполняется $\rho_r(v, u) \ge d_0$, потому что имеет место следующая лемма 1.

Лемма 1. Пусть $v = \lor c_i$, $u = \lor c_j$ и $\rho_r(c_i, c_j) ≥ d_0$ хоть для одной пары c_i , c_j . Тогда $\rho_r(v, u) ≥ \rho_r(c_i, c_j) ≥ d_0$. ■ Полученный в ходе доказательства предложения 1 Р-код – это корректирующий код при $d_0 ≥ 2$, так как для любых его кодовых слов v ≠ u выполняется $\rho_r(v, u) ≥ d_0$. Например, взяв в $L_{\Pi PK}(2, 3)$ элементы 200, 020, 002 (см. рис. 1) и найдя все $\land c_i, \lor c_i$ и т.д., получим решеточный Р-код 000, 200, 020, 002, 220, 202, 222, для любых кодовых слов v и u которого выполняется $\rho_r(v, u) ≥ d_0 = 2$, так что этот код обнаруживает одну ошибку.

Все решеточные корректирующие коды того же типа для любой $L_{\Pi PK}(m,n), m \ge 2$, с ранг-метрикой суть 00...0, m0...0, 0m...0, 0...0m, mm0...0, ..., mm...m, а так как $\rho_r(v,u) \ge d_0 = m$, то при $m \ge 3$ эти коды не только обнаруживают, но и исправляют ошибки. Решеточные коды этого типа можно использовать для шифрования, например, двоичных ΠP -кодов типа 00...0, 10...0, 01...0, 0...01, 110...0, ..., 11...1, превращая их в коды m0...0, 0m...0, 0...0m, mm0...0, ..., mm...m; при этом, хотя решетки этих кодов изоморфны, они при $m \ge 2$ существенно различны: полученный код – это корректирующий код, а исходный двоичный код таковым, конечно, не является.

Если же взять подходящие вложения $L_{\Pi PK}(m,n)$ в $L_{\Pi PK}(m+k,n)$ или в $L_{\Pi PK}(m+k,n+t)$, $k,t \ge 1$, то, исходя из кодов указанного типа в $L_{\Pi PK}(m,n)$, можно построить решеточные коды и другого типа соответственно в $L_{\Pi PK}(m+k,n)$ и $L_{\Pi PK}(m+k,n+t)$.

2. L-модель равномерных кодов

С учетом сказанного в п. 1 введем следующую L-модель ПР- и Р-кодов.

Основное определение. Множество всех элементов решетки $L(m, n) = \Pi_1{}^n C_i$, $l(C_i) = m$, назовем ПР-кодом, считая, что L(m, n) есть $L_{\Pi PK}(m, n)$, а любое непустое подмножество элементов решетки $L(m, n) = L_{\Pi PK}(m, n)$ назовем Р-кодом.

Цепи и антицепи. Уровневые числа. Наиболее удобной решеткой $L_{\Pi PK}(m, n)$ для дальнейшего исследования является решетка, построенная над алфавитом $A = \{0, 1, ..., m\}$, так как тогда любое целое j, определяющее j-уровень этой решетки, равно весу $\omega(v)$ любого слова v этого j-уровня: $j = \omega(v)$, $0 \le j \le nm$.

Один из основных классов кодов – коды с постоянным весом строятся на основе групп перестановок. Взяв $L_{\Pi PK}(m, n)$, можно построить коды с кусочно-постоянным весом, пример одного из которых мы и предъявляем на рис. 1. Ясно, что коды с постоянным весом – частный случай кодов с кусочно-постоянным весом.

В дополнение к аналогам $h(\Pi_1^k P_i) = \Sigma_1^k h(P_i)$ и $l(\Pi_1^k C_i) = \Sigma_1^k l(C_i)$, см. [1], основного свойства логарифмической функции: $\ln(x \cdot y) = \ln(x) + \ln(y)$ приведем также следующий аналог этого свойства. Пусть Ach(j) – антицепь, являющаяся j-уровнем решетки $L = \Pi_{i=1}^n C_i$ и $ach(j) = |Ach(j)| = w_j$ – уровневые числа (числа Уитни).

Лемма 2. При $0 \le j \le m$ и $n \ge 2$ для любой антицепи Ach(j) j-уровня решетки $L = \prod_{i=1}^n C_i$, $l(C_i) = m$, i = 1, ..., n, справедливо

$$ach(j, \Pi_{i=1}{}^{n}C_{i}) = \Sigma_{t=0}{}^{j} ach(t, \Pi_{i=1}{}^{n-1}C_{i}),$$
 равносильно $w_{j}(\Pi_{i=1}{}^{n}C_{i}) = \Sigma_{t=0}{}^{j} w_{t}(\Pi_{i=1}{}^{n-1}C_{i}).$

Объемы шаров и границы. Пусть $A(n, m, d_0)$ – равномерный код (подмножество кодовых слов множества W всех слов равной длины l=n над алфавитом объема m+1), любые два слова которого находятся на расстоянии $\rho(v,w) \le d_0$ – минимального кодового расстояния. Пусть далее $Sh(r,z) := \{x: \rho(x,z) \le r\}$ – шар радиуса $r \ge 0$ и с центром z,z – некоторое слово, например кодовое, внутренность шара $Int(Sh(r,z)) := \{x: \rho(x,z) < r, r \ge 1\}$, сфера $Sf(r,z) := Sh(r,z) \setminus Int(Sh(r,z)) = \{x: \rho(x,z) = r\}$ и Vsh(r,z) := |Sh(r,z)| – объем шара. Тогда

$$Vsh(r,z) = |Sf(r,z) \cup Int(Sh(r,z))| = |Sf(r,z)| + |Int(Sh(r,z))|$$
 при $r \ge 1$.

При r = 0 считаем по определению, что шар Sh(0, z) совпадает со своей внутренностью, а площадь его сферы равна 0.

Ясно, что минимальный объем шара Sh(r,z) в L(n,m) при $r \ge 1$ и кодовом слове z не может быть меньше 2, так как он должен содержать хотя бы 2 элемента, а чтобы код мог обнаруживать хоть одну ошибку, нужно, чтобы $d_0 \ge 2$, а тогда $r \le d_0/2$.

Объемы шаров в ранг-метрике одного и того же радиуса r, вообще говоря, различны (см. рис. 1), поэтому говорим о минимальном значении объемов шаров $Vsh_{\min}(r)$, максимальном $Vsh_{\max}(r)$ и среднем значении $Vsh_{\rm sr}(r)$ объемов шаров. Тогда в общем случае непосредственно получаем следующие неравенства и границы

$$m^n / Vsh_{\max}(r) \le m^n / Vsh_{\operatorname{sr}} \le m^n / Vsh_{\min}, \ (m+1)^n / Vsh_{\max}(r) \le \max |A(n,m,d_0)| \le \lceil (m+1)^n / d_0 \rceil.$$

Здесь и ниже m+1 – объем алфавита $A=\{0,...,m\}$ и $\lceil \rceil$ – целая часть числа сверху, например, $\lceil 25:2 \rceil = 13$. В частном случае двоичного алфавита $A=\{0,1\}, m=1$, имеем

$$2^n / Vsh_{\max}(r) \le \max |A(n, m, d_0)| \le \lceil 2^n / d_0 \rceil.$$

Очевидно, что точное значение $\max |A(n, m, d_0)|$ находится в ряду чисел

$$\lceil m^n / Vsh_{max}(r) \rceil$$
, $1 + \lceil m^n / Vsh_{max}(r) \rceil$, $2 + \lceil m^n / Vsh_{max}(r) \rceil$, ..., $\lceil m^n / d_0 \rceil$.

Оказалось, что хотя объемы шаров в ранг-метрике одного и того же радиуса r, вообще говоря, различны, существуют максимальные P-коды объема $\max |A(n, m, d_0)| = \lceil m^n : d_0 \rceil$, так что указанная верхняя граница $\lceil m^n : d_0 \rceil$ достигается. Приведем из них простейший код объема $\max |A(2, 5, 2)| = 13$ с $d_0 = 2$, обнаруживающий любую одну ошибку: 00, 11, 02, 20, 22, 13, 31, 33, 04, 40, 24, 42, 44, где взят алфавит $\{0, 1, 2, 3, 4\}$, а каждый шар имеет радиус r = 1; это же значение объема кода получаем согласно формуле $\max |A(n, m, d_0)| = \lceil m^n : d_0 \rceil$ при n = 2, m = 5 и $d_0 = 2$.

Так как в случае H-метрики длина P-кода n — это максимальное значение функции ρ_H , то в этом случае шары, центры которых — кодовые слова, а внутренности не пересекаются, есть смысл брать лишь с радиусом r для $0 \le r < n$.

Если на L(n, m) задана H-метрика, то площади сфер одного и того же радиуса r равны, а шары одного и того же радиуса r равнообъёмны, так что при фиксированном радиусе r соответственно имеем

площадь любой сферы
$$|Sf(r,z)| = C_n^r m^r$$
, объём любого шара $Vsh(r,z) = 1 + \sum_{r=1}^r C_n^{ri} m^{ri}$.

Поэтому, в случае H-метрики при m=1 с учётом равнообъёмности шаров одного того же радиуса r получаем

$$2^{n}/(1+\sum_{r=1}^{r}C_{n}^{r_{i}}) \leq \max |A(n, m, d_{0})| \leq \lceil 2^{n}/d_{0} \rceil.$$

L(m,n) как решетки композиций чисел от 0 до nm с ограничениями. Как известно [10, Гл.1, п.2C], упорядочение множества разложений целого положительного числа n в суммы $n_1 + n_2 + ... + n_k$ целых положительных неупорядоченных слагаемых (так что, например, 1+2=2+1) приводит к у-множеству $D(n) - \partial o$ -минирующему порядку. Если же и слагаемые в сумме также упорядочены, так что, например, $1+2 \neq 2+1$, то получаем решетку $D_{\leq}(n)$ композиций числа n (см. диаграммы D(5) и $D_{\leq}(5)$ на рис. 2).

Утверждение 1.

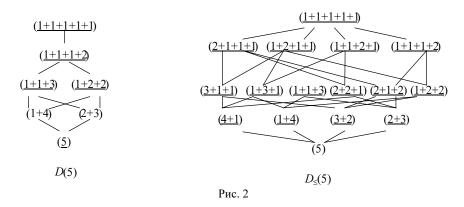
- 1. D(n) является ранжированной модулярной мультирешеткой [3, 5, 11].
- 2. D_≤(n) булева решетка, точнее: D_≤(n) \cong Bool(n–1).
- 3. Каждому элементу вида $n_1 + n_2 + ... + n_k$ из D(n) соответствует свой класс эквивалентности из $D_{\leq}(n)$, получаемый из $n_1 + n_2 + ... + n_k$ всеми перестановками этих слагаемых, так что существует биекция между классами эквивалентности на множестве элементов k-уровня из $D_{\leq}(n)$ и множеством элементов k-уровня из D(n), $0 \leq k \leq n$.

Существует монотонная сюръекция $sur(D_{\leq}(n)) = D(n)$.

Решетка Юнга J имеет следующую связь с D(n): |D(n)| = | множество элементов уровня n решетки J|.

Имеет место следующая связь между $D_{\leq}(n)$ композиций числа n и ПР-кодами над алфавитом $A=\{0,\ldots,n\}$: мощность множества слов длины n+k и веса $\omega \leq n, \ 0<\omega,$ в $L_{\Pi P K}(m,n+k)$ полностью определяется всеми подходящими расстановками нулей в элементах из $D_{\leq}(i),\ 1\leq i\leq n$. Поэтому существует сюръекция n+k-уровня и веса $\omega \leq n$ решетки $L_{\Pi P K}(m,n+k)$ на $D_{\leq}(n)$.

В свете вышесказанного становится очевидным, что теория L-кодирования не ограничена рамками проблематики лишь равномерных кодов, потому что, например, элементы любой решетки $D_{\le}(n)$ композиций, как и доминирующего порядка D(n), могут быть взяты и как слова неравной длины, а потому и как неравномерный код постоянного веса (см. рис. 2).



К тому же изоморфизм $D_{\le}(n)\cong Bool(n-1)$ можно использовать для кодирования с переходом от слов 11...1, 21...1, ..., 1...12, ..., n-11, n соответственно длины от n до 1 над алфавитом $\{1, ..., n\}$ к словам равной длины n-1 над алфавитом $\{0, 1\}$, а также для обратного перехода. Можно также использовать вложения решетки $D_{\le}(n)$ в подходящую решетку $D_{\le}(n+k), k=1, ...,$ при расширении кода и обратно: использовать наложения $D_{\le}(n+k)$ на $D_{\le}(n)$ при сжатии (сужении) кода, выкалывании и т.п.; эти же приемы, естественно, можно использовать для $L_{\Pi PK}(m,n)$ при вложениях ее в $L_{\Pi PK}(m+k,n)$ или $L_{\Pi PK}(m+k,n+t), k, t \ge 1$, или при их наложениях на $L_{\Pi PK}(m,n)$. Тем самым получаем различные способы и кодирования, и шифрования (точнее, кодошифрования — шифрования закодированного сообщения).

3. Структуры матроидного типа: матроиды и с-матроиды

Множество S вместе с оператором замыкания $A \to \overline{A}$ называется матроидом [10, 11], если для всех $A \subseteq S$ и любых $p, q \in S$ выполняются аксиомы замены Штейница и конечного базиса.

Как известно [10, гл. II, § 3, теорема 2.29 (Биркгоф – Уитни)], множество точек $T = \{p : p \in L_\gamma\}$ геометрической решетки L_γ вместе с оператором замыкания $\phi \colon T' \to \overline{T}' = \{p : p \le \sup(T'), p \in T, \varnothing \ne T' \subseteq T\}$ и аксиомой замены Штейница является простым матроидом.

В частности, из этого предложения и теоремы 1 извлекаем следующее утверждение.

Утверждение 2. Множество T точек булевой решетки двоичного ПР-кода над алфавитом $A = \{0, 1\}$ с оператором замыкания ϕ и аксиомой замены Штейница является простым матроидом. Если к T добавить о и взять пару: множество T∪ $\{0\}$ вместе с отношением порядка \leq , являющимся ограничением порядка булевой решетки на T∪ $\{0\}$, то пара < T∪ $\{0\}$, $\le >$ превращается в суперматроид (определение суперматроида и его свойства см. в [12, 13]). ■

Определение [2]. Множество всех c-элементов $C \subseteq L$ вместе с оператором замыкания ϕ называется c-матроидом, если для всех $C' \subseteq C$, $C' \neq \emptyset$, и любых $c_1, c_2 \in C$ выполняется следующая аксиома замены:

из
$$c_1 \notin \varphi(C')$$
 и $c_1 \in \varphi(C' \cup c_2)$ следует существование такого c_2' , что $0 < c_2' \le c_2$ и $c_2' \in \varphi(C' \cup c_1)$.

Как указано в теореме 1, множество всех c-элементов решетки L_A является c-матроидом, а при добавлении к ним всех элементов рангов, соответствующих рангам c-элементов, оказывается суперматроидом.

Исследование c-матроидов связано также с 25-й проблемой Скорнякова [14]: исследовать дедекиндовы структуры, в которых каждый элемент представляется в форме $a = \sum_{i=1}^{n(a)} La_i$, где La_i – цепи, в частности конечные (дедекиндовы структуры – это модулярные решетки), см. [2].

Заключение. Структуры других моделей

Приведем здесь кратко факты, подтверждающие, что и многие другие модели, используемые в кодировании и криптографии, имеют структуры, являющиеся *s*-множествами, в частности решетками.

Геометрические коды, как известно, строятся над геометриями. С геометриями, в которых две различные точки определяют единственную прямую (однозначные геометрии), выпуклыми геометриями, матроидами и антиматроидами ассоциированы геометрические и слабо полудистрибутивные решетки [15]. По этому поводу отметим следующее. Неоднозначные геометрии (две различные точки не обязательно определяют единственную прямую, например, как в геометрии Мебиуса) ассоциированы не с решетками, а с геометрическими *ML*-решетками и *p*-матроидами [2, 3].

О структурах моделей дискретных систем, в том числе автоматов и ассоциированных с ними языков, см. [16 – 18], где показано, что эти структуры являются решетками или полурешетками.

О семиотических моделях информации, моделях неопределенности и соответствующих им *s*-множествах и решетках см. [7, 19, 20].

Проблемы и вопросы теории кодирования и криптографии приведены в [8, 9], см. также [1, 3 – 5, 10].

ЛИТЕРАТУРА

- 1. Кутьин А.М. Коды и решетки // Вестник ТГУ. Приложение. 2006. № 17. С. 30 34.
- 2. Кутьин А.М. Р-матроиды // Дискретная математика. 2005. Т. 17. Вып. 3. С. 146 160.
- 3. *Кутьин А.М.* Проблемы теории кодирования и теория геометрий // Проблемы информатизации региона. Красноярск: Изд-во КТГУ, 2001. С. 90 103.
- 4. *Кутьин А.М.* Открытые вопросы теории кодирования и криптографии. I // Проблемы информатизации региона. Красноярск: Изд-во КТГУ, 2001. С. 74 91.
- 5. *Кутьин А.М.* Информация, безопасность, кодирование и решетки. III // Проблемы информатизации региона: Шестая Всерос. науч.-практич. конф.: Доклады. Красноярск: Изд-во КТГУ, 2000. С. 74 79.
- 6. *Кутьин А.М.* Вопросы теории кодирования и решетки // Безопасность информационных технологий. М.: МИФИБ, 2001. № 4. С. 79 84.
- 7. *Кутьин А.М.* О моделях информации. II // Информационная реальность и цивилизация. Красноярск: Изд-во САА, 1998. C. 73 81.
- 8. Конвей Дж., Слоэн Н. Упаковки шаров, решетки и группы. Т. 1. М.: Мир, 1990.
- 9. Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. М.: Связь, 1979.
- 10. Айгнер М. Комбинаторная теория. М.: Мир, 1982. 558 с.
- 11. Биркгоф Г. Теория решеток. М.: Мир, 1984.
- 12. Емеличев В.А., Ковалев М.М., Кравцов М.К. Многогранники, графы, оптимизация. М.: Наука, 1981.
- 13. Ковалев М.М. Матроиды в дискретной оптимизации. Минск: Изд-во Университетское, 1987.
- 14. Скорняков Л.А. Дедекиндовы структуры с дополнениями и регулярные кольца. М.: Физматгиз, 1961.
- 15. Горбунов В.А. Алгебраическая теория квазимногообразий. Новосибирск: Научная книга, 1999.
- 16. Агибалов Г.П. Дискретные автоматы на полурешетках. Томск: Изд-во Том. ун-та, 1993.
- 17. Богомолов А.М., Салий В.Н. Алгебраические основы теории дискретных систем. М.: Наука, 1997.
- 18. *Салий В.Н.* Представление языков в решеточных автоматах // Методы и системы техн. диагностики. 1992. № 17. С. 33 36.
- 19. *Кутьин А.М*. К теории неопределенности: модели и структуры // Вестник КГТУ. Математические методы и моделирование. 2003. № 30. С. 14 27.
- 20. Кутьин А.М. Теория направленных *s*-множеств // Вестник КГТУ. 2001. Вып. 26. С. 117 126.