2008

Прикладная теория графов

Nº 1(1)

DOI 10.17223/20710410/1/17 УДК 681.3 + 519.21

ПРЕОБРАЗОВАНИЕ РЕШЁТОК В 1-ОТКАЗОУСТОЙЧИВЫЕ ГРАФЫ

И.А. Науменко, В.Г. Скобелев

Донецкий национальный технический университет Институт прикладной математики и механики НАН Украины, г. Донецк

E-mail: e-one@bk.ru, skbv@iamm.ac.donetsk.ua

Решается задача преобразования трансляцией по циклической группе графа некоторых n-мерных решёток в 1-отказоустойчивые графы. Оценен ряд характеристик результирующих графов.

Ключевые слова: графы, 1-отказоустойчивые системы.

В работе исследуется задача преобразования n-мерных решёток в 1-отказоустойчивые графы методом, предложенным в [1]. Детально этот метод изложен в [2, 3]. Предполагается, что в преобразуемом графе существует гамильтонов путь либо цикл [4]. При их отсутствии исходный граф преобразуется в граф, имеющий гамильтонов путь. Реконфигурация при отказах производится преобразованием отказавшей вершины (связи) на избыточную с соответствующим переименованием вершин графа по одной из следующих групп автоморфизмов: циклической группе вращений (поворот на угол $\frac{2\pi}{n}i$ (i=0,...,n-1)) или диэдральной группе симметрий.

Структура работы следующая: в п. 1 даны основные понятия и определения; в п. 2 исследуется преобразование простых прямоугольных n-мерных решеток, а в п. 3 — диагональных прямоугольных n-мерных решеток. Заключение содержит ряд выводов.

1. Основные понятия

Исходный объект — граф G=(V,E), где V — множество вершин, $E(E\subseteq V^{(2)})$ — множество рёбер. Задачей исследования является построение такого графа $G^*=(V_1,E_1)$, что при удалении одной его вершины либо ребра редуцированный граф $G^*_{\text{ред}}$ содержит подграф $G^*_{\text{изоморфный}}$ G. При этом естественно строить не избыточный граф G^* , т.е. граф, который теряет свойство «быть 1-отказоустойчивым» при удалении хотя бы одной вершины либо ребра. Особый интерес представляют минимальные 1-отказоустойчивые графы, т.е. которые содержат наименьшее число вершин и ребер. В 1-отказоустойчивом графе G^* существуют ребра 2-х типов: рабочие и избыточные, т.е. те, которые появились в результате преобразования графа к виду 1-отказоустойчивого графа G^* . Назовем степенью вершинной избыточности графа G число $v_{\text{в}}(G) = |V_1| \cdot |V|^{-1}$, а степенью рёберной избыточности графа G – число $v_{\text{p}}(G) = |E_1| \cdot |E|^{-1}$. В дальнейшем считаем, что $V = \mathbf{Z}_k$, и, следуя [3], сохраним термин «ребро» только за такими элементами $\{z_i, z_j\} \in E$, что $|z_i - z_j| = 1$, а элемент $\{z_i, z_j\} \in E$, для которого $|z_i - z_j| > 1$, будем называть хордой длины l. Пусть $S_l(G)$ ($l \ge 2$) — число хорд длины l в графе G, а S(G) — общее число хорд в графе G, т.е.

$$S(G) = \sum_{l \ge 2} S_l(G). \tag{1}$$

Пусть $S^{\text{pa6}}(G^*)$ и $S^{\text{H36}}(G^*)$ — соответственно число рабочих и избыточных хорд в графе G^* . Тогда $S^{\text{pa6}}(G^*) = S(G)$ и $S^{\text{H36}}(G^*) = S(G^*) - S^{\text{pa6}}(G^*)$. Пусть E(G) — число рёбер в графе G, а $E^{\text{pa6}}(G^*)$ и $E^{\text{H36}}(G^*)$ — соответственно число рабочих и избыточных рёбер в графе G^* . Тогда $E^{\text{pa6}}(G^*) = E(G)$ и $E^{\text{H36}}(G^*) = E(G^*) - E^{\text{pa6}}(G^*)$. Характеристиками избыточности при переходе от графа G к графу G^* являются параметры $v_{s}(G)$, $v_{p}(G)$, $S^{\text{H36}}(G^*)$, $S^{\text{pa6}}(G^*)$, $E^{\text{H36}}(G^*)$, $E^{\text{H36}}(G^*)$.

Рассмотрим характеристики 1-отказоустойчивых графов на примере некоторых однородных структур.

2. Простые прямоугольные *п*-мерные решетки

Назовем простой прямоугольной n-мерной решёткой такой граф $R_{k_1,\dots,k_n}=(V,E)$, что $V=\mathop{\times}\limits_{i=1}^n Z_{k_i}$ и

$$E = \{\{(v_1, ..., v_n), (v_1', ..., v_n')\} \subseteq V \mid (\exists! \ j \in \{1, ..., n\})(|v_j - v_j'| = 1 \& (\forall j' \neq j)(v_j = v_j'))\}.$$

Занумеруем вершины графа $R_{k_1,...,k_n}$ так, что номером вершины $\mathbf{v}=(v_1,\,...,\,v_n)$ является число

$$q(\mathbf{v}) = v_1 + k_1 \cdot v_2 + k_1 \cdot k_2 \cdot v_3 + \ldots + k_1 \cdot \ldots \cdot k_{(n-1)} \cdot v_n = \sum_{i=1}^n \left(v_i \cdot \prod_{i=0}^{n-1} k_j \right).$$
 (2)

Пусть $\{v, v'\} \in E$, где $v = (v_1, ..., v_i, ..., v_n) \in V$ и $v' = (v_1, ..., v_i + 1, ..., v_n) \in V$. Из (2) вытекает, что $q(v) = v_1 + k_1 \cdot v_2 + ... + k_1 \cdot ... \cdot k_{i-1} \cdot v_i + ... + k_1 \cdot ... \cdot k_{(n-1)} \cdot v_n;$ (3)

$$q(\mathbf{v'}) = v_1 + k_1 \cdot v_2 + \dots + k_1 \cdot \dots \cdot k_{i-1} \cdot (v_i + 1) + \dots + k_1 \cdot \dots \cdot k_{(n-1)} \cdot v_n. \tag{4}$$

Из (3) и (4) вытекает, что

$$|q(\mathbf{v}) - q(\mathbf{v'})| = k_1 \cdot ... \cdot k_{i-1} \ (i = 2, ..., n).$$
 (5)

Из (5) вытекают

Утверждение 1. В решетке $R_{k_1,...,k_n}$ $\{\mathbf{v}=(v_1,...,v_i,...,v_n), \mathbf{v'}=(v_1,...,v_i+1,...,v_n)\}\in E$ – хорда тогда и только тогда, когда i=2,...,n.

Утверждение 2. В решетке $R_{k_1,...,k_n}$ если $\{v,v'\} \in E$ – хорда длины l, то

$$l \in \left\{ k_1, k_1 \cdot k_2, ..., \prod_{i=1}^{n-1} k_i \right\}.$$
 (6)

Так как

$$\begin{cases}
S_{k_{1}}(R_{k_{1},...,k_{n}}) = k_{1} \cdot (k_{2} - 1) \cdot k_{3} \cdot ... \cdot k_{n} = \prod_{i=1}^{n} k_{i} \cdot (1 - k_{2}^{-1}), \\
S_{k_{1} \cdot k_{2}}(R_{k_{1},...,k_{n}}) = k_{1} \cdot k_{2} \cdot (k_{3} - 1) \cdot k_{4} \cdot ... \cdot k_{n} = \prod_{i=1}^{n} k_{i} \cdot (1 - k_{3}^{-1}), \\
... \cdot ...$$

то из (1), (6) и (7) вытекает

Теорема 1. Для решетки $R_{k_1,...,k_n}$ истинно равенство

$$S(R_{k_1,...,k_n}) = \left((n-1) - \sum_{i=0}^n k_i^{-1} \right) \cdot \prod_{i=1}^n k_i$$

Преобразуем решетку R_{k_1,\dots,k_n} к виду 1-отказоустойчивого графа. Для этого добавим рёбра таким образом, чтобы гамильтонов путь имел стандартный вид: $0 \to 1 \to \dots \to (n-1)$. Добавим новую вершину n и соединим её с вершинами 0 и n-1. Для того чтобы получить минимальный 1-отказоустойчивый граф, необходимо вставить избыточную вершину n в ребро, принадлежащее гамильтонову пути. Осуществим трансляцию дуг по циклической группе автоморфизмов C_n . В результате получим 1-отказоустойчивый граф R_{k_1,\dots,k_n}^* .

Характеристики избыточности при переходе от R_{k_1,\dots,k_n} к R_{k_1,\dots,k_n}^* равны

$$\begin{split} S^{\text{pa6}}\left(R_{k_{1},...,k_{n}}^{*}\right) &= S(R_{k_{1},...,k_{n}}) = \left((n-1) - \sum_{i=2}^{n} k_{i}^{-1}\right) \cdot \prod_{i=1}^{n} k_{i} , \\ S^{\text{H36}}\left(R_{k_{1},...,k_{n}}^{*}\right) &= \prod_{i=1}^{n} k_{i} \sum_{i=2}^{n} k_{i}^{-1} + n - 1, \\ E^{\text{pa6}}\left(R_{k_{1},...,k_{n}}^{*}\right) &= (k_{1} - 1) \prod_{i=2}^{n} k_{i} , \\ E^{\text{H36}}\left(R_{k_{1},...,k_{n}}^{*}\right) &= \prod_{i=2}^{n} k_{i} + 1. \end{split}$$

Рассмотрим специальные случаи прямоугольной n-мерной решётки R_{k_1,\dots,k_n} , когда $n\in\{2,3\}$.

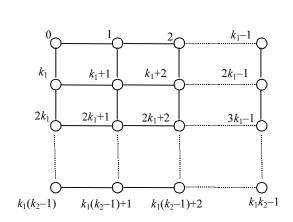
1. n=2. Решётка R_{k_1,k_2} размера изображена на рис. 1, а граф R_{k_1,k_2}^* — на рис. 2.

Сведём характеристики графа R_{k_1,k_2}^* в табл. 1.

Характеристики графа R_{k_1,k_2}^*

Таблица 1

Элементы решётки	Рабочие	Избыточные
Вершины	k_1k_2	1
Рёбра	$(k_1-1)k_2$	$k_2 + 1$
Хорды	$(k_2-1)k_1$	$k_1 + 1$
Связи (обш.)	$2k_1k_2 - k_1 - k_2$	$k_1 + k_2 + 2$



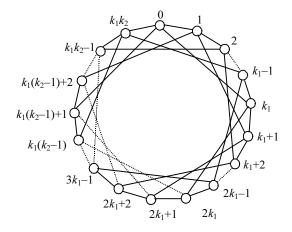


Рис. 1. Решётка R_{k_1,k_2}

Рис. 2. Граф R_{k_1,k_2}^*

Из табл. 1 вытекает, что степени вершинной и рёберной избыточности графа R_{k_1,k_2}^* равны соответственно:

$$v_{\rm B}(R_{k_1,k_2}) = 1 + (k_1k_2)^{-1},$$

 $v_{\rm p}(R_{k_1,k_2}) = 1 + \frac{k_1 + k_2 + 2}{2k_1k_2 - k_1 - k_2}.$

2. n=3. Решётка R_{k_1,k_2,k_3} изображена на рис. 3. Характеристики графа R_{k_1,k_2,k_3}^* сведены в табл. 2.

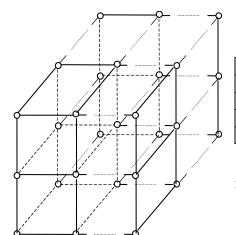


Рис. 3. Решётка R_{k_1,k_2,k_3}

Характеристики графа R_{k_1,k_2,k_3}^*

Таблица 2

Элементы решётки	Рабочие	Избыточные
Вершины	$k_1 k_2 k_3$	1
Рёбра	$(k_1-1)k_2k_3$	$k_2k_3 + 1$
Хорды	$2k_1k_2k_3 - k_1(k_2 + k_3)$	$k_1(k_2+k_3)+2$
Связи (общ.)	$3k_1k_2k_3 - k_1k_2 - k_1k_3 - k_2k_3$	$k_1k_2 + k_1k_3 + k_2k_3 + 3$

Из табл. 2 вытекает, что степени вершинной и рёберной избыточности равны соответственно:

$$v_{\rm B}(R_{k_1,k_2}) = 1 + (k_1 k_2)^{-1},$$

$$v_{\rm p}(R_{k_1,k_2}) = 1 + \frac{k_1 k_2 + k_1 k_3 + k_2 k_3 + 3}{3k_1 k_2 k_3 - k_1 k_2 - k_1 k_3 - k_2 k_3}.$$

3. Диагональные прямоугольные *п*-мерные решетки

Диагональной прямоугольной n-мерной решёткой назовём такой граф $D_{k_1,\dots,k_n}=(V',E')$, что $V'=\sum_{i=1}^n Z_{k_i}$ и

$$E' = E \cup D^{(1)} \cup D^{(2)}$$

где

$$D^{(1)} = \bigcup_{\substack{i=1,\dots,n-1\\j=i+1,\dots,n}} D^{(1)}_{ij} \ , \ D^{(2)} = \bigcup_{\substack{i=1,\dots,n-1\\j=i+1,\dots,n}} D^{(2)}_{ij} \ ,$$

a
$$D_{ij}^{(1)} = \{(v_1, ..., v_n), (v_1, ..., v_i + 1, ..., v_j + 1, ..., v_n)\},$$

$$D_{ij}^{(2)} = \{(v_1, ..., v_i, ..., v_j + 1, ..., v_n), (v_1, ..., v_i + 1, ..., v_j, ..., v_n)\}.$$

Пусть $\{v, v'\} \in D_{ij}^{(1)}$, где $v = (v_1, ..., v_i, ..., v_j, ..., v_n) \in V$ и $v' = (v_1, ..., v_i + 1, ..., v_j + 1, ..., v_n) \in V$. Из (2) вытекает, что

$$q(\mathbf{v}) = v_1 + \ldots + k_1 \cdot \ldots \cdot k_{i-1} \ v_i + \ldots + k_1 \cdot \ldots \cdot k_{i-1} \cdot v_i + \ldots + k_1 \cdot \ldots \cdot k_{(n-1)} \cdot v_n; \tag{8}$$

$$q(\mathbf{v'}) = v_1 + \ldots + k_1 \cdot \ldots \cdot k_{i-1} (v_i + 1) + \ldots + k_1 \cdot \ldots \cdot k_{i-1} \cdot (v_i + 1) + \ldots + k_1 \cdot \ldots \cdot k_{(n-1)} \cdot v_n.$$
(9)

Из (8) и (9) вытекает, что

$$|q(\mathbf{v})-q(\mathbf{v'})| = (k_1 \cdot \ldots \cdot k_{i-1})(1+k_i \cdot \ldots \cdot k_{j-1}) \ (i,j=2,\ldots,n).$$

Число таких диагоналей равно

$$S_{D_{ij}^{(1)}} = \prod_{h=1}^{n} k_h \cdot \sum_{i < i} ((1 - k_j^{-1})(1 - k_i^{-1})).$$

Пусть $\{v, v'\} \in D_{ij}^{(2)}$, где $v = (v_1, ..., v_i, ..., v_j + 1, ..., v_n) \in V$ и $v' = (v_1, ..., v_i + 1, ..., v_j, ..., v_n) \in V$. Из (2) вытекает,

$$q(\mathbf{v}) = v_1 + k_1 \cdot \dots \cdot k_{i-1} v_i + \dots + k_1 \cdot \dots \cdot k_{i-1} \cdot (v_i + 1) + \dots + k_1 \cdot \dots \cdot k_{(n-1)} \cdot v_n; \tag{10}$$

$$q(\mathbf{v'}) = v_1 + k_1 \cdot \dots \cdot k_{i-1} (v_i + 1) + \dots + k_1 \cdot \dots \cdot k_{j-1} \cdot v_j + \dots + k_1 \cdot \dots \cdot k_{(n-1)} \cdot v_n.$$
(11)

Из (10) и (11) вытекает, что

$$|q(\mathbf{v})-q(\mathbf{v'})| = (k_1 \cdot ... \cdot k_{i-1})(1-k_i \cdot ... \cdot k_{j-1}) \ (i,j=2,...,n).$$

Нетрудно убедиться в том, что

$$\begin{split} S_{D_{ij}^{(1)}} &= S_{D_{ij}^{(2)}} = \prod_{h=1}^{n} k_h \cdot \sum_{i < j} (1 - k_j^{-1}) (1 - k_i^{-1}) , \\ S_{D_{ii}^{(n)}} &= \left| D_{ij}^{(n)} \right| \ (n = 1, 2). \end{split}$$

где

После трансляции дуг по циклической группе автоморфизмов C_n получим 1-отказоустойчивый граф D_{k_1,\dots,k_n}^* . Характеристики избыточности при переходе от решетки D_{k_1,\dots,k_n} к графу D_{k_1,\dots,k_n}^* равны:

$$\begin{split} E^{\mathrm{pa6}}(D_{k_1,\ldots,k_n}^*) &= (k_1 - 1) \prod_{i=2}^n k_i \;, \\ E^{\mathrm{H36}}(D_{k_1,\ldots,k_n}^*) &= \prod_{i=2}^n k_i \; + 1, \\ S^{\mathrm{pa6}}(D_{k_1,\ldots,k_n}^*) &= \left(n - 1 - \sum_{i=2}^n k_i^{-1} + 2 \sum_{i < j} (1 - k_j^{-1})(1 - k_i^{-1}) \right) \prod_{i=1}^n k_i \;, \\ S^{\mathrm{H36}}(D_{k_1,\ldots,k_n}^*) &= \left(2n + \sum_{i=2}^n k_i^{-1} - 2 \sum_{i < j} (1 - k_j^{-1})(1 - k_i^{-1}) \right) \prod_{h=1}^n k_h + 3n - 3 \;. \end{split}$$

Рассмотрим специальные случаи диагональной прямоугольной n-мерной решётки D_{k_1,\dots,k_n} , когда $n \in \{2,3\}$.

1. n=2. Решётка D_{k_1,k_2} изображена на рис. 4, а граф D_{k_1,k_2}^* — на рис. 5.

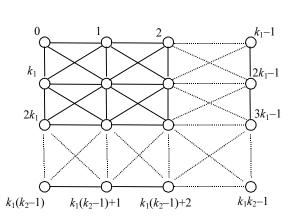


Рис. 4. Решётка D_{k_1,k_2}

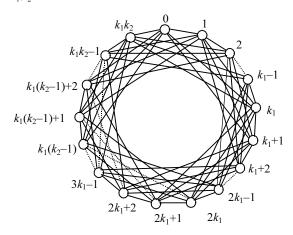


Рис. 5. Граф D_{k_1,k_2}^*

Характеристики графа D_{k_1,k_2}^* сведём в табл. 3.

Таблица 3

Характеристики графа D_{k_1,k_2}^*

Элементы решётки	Рабочие	Избыточные
Вершины	k_1k_2	1
Рёбра	$(k_1-1)k_2$	$k_2 + 1$
Хорды	$3k_1k_2 - 3k_1 - 2k_2 + 2$	$3k_1 + 2k_2 + 1$
Связи (общ.)	$4k_1k_2 - 3(k_1 + k_2) + 2$	$3k_1 + 3k_2 + 2$

Из табл. 3 вытекает, что степени вершинной и рёберной избыточности графа D_{k_1,k_2}^* равны соответственно:

$$v_{\rm B}(D_{k_1,k_2}^*) = 1 + (k_1 k_2)^{-1},$$

$$v_{\rm p}(D_{k_1,k_2}^*) = 1 + \frac{3k_1 + 3k_2 + 2}{4k_1 k_2 - 3k_1 - 3k_2 + 2}.$$

2. n = 3. Характеристики графа D_{k_1,k_2,k_3}^* сведены в табл. 4.

Таблица 4

Характеристики графа R_{k_1,k_2,k_3}^*

Элементы решётки	Рабочие	Избыточные
Вершины	$k_1 k_2 k_3$	1
Рёбра	$(k_1-1)k_2k_3$	$k_2k_3 + 1$
Хорды	$8k_1k_2k_3 - 5k_1k_3 - 5k_1k_2 - 4k_2k_3 + 2(k_1 + k_2 + k_3)$	$5k_1(k_2+k_3)+4k_2k_3-2(k_1+k_2+k_3)-2k_1k_2k_3+6$
Связи (общ.)	$9k_1k_2k_3 - 5k_1k_3 - 5k_1k_2 - 5k_2k_3 + 2(k_1 + k_2 + k_3)$	$5k_1(k_2+k_3)+5k_2k_3-2(k_1+k_2+k_3)-2k_1k_2k_3+7$

Из табл. 4 вытекает, что степени вершинной и рёберной избыточности равны соответственно:

$$\begin{split} \mathbf{v}_{\mathrm{B}}(\boldsymbol{D}_{k_{1},k_{2},k_{3}}^{*}) &= 1 + (k_{1}k_{2})^{-1}\,,\\ \\ \mathbf{v}_{\mathrm{p}}(\boldsymbol{D}_{k_{1},k_{2},k_{3}}^{*}) &= 1 + \frac{5(k_{1}k_{2} + k_{1}k_{3} + k_{2}k_{3}) - 2(k_{1} + k_{2} + k_{3}) - 2k_{1}k_{2}k_{3} + 7}{9k_{1}k_{2}k_{3} - 5(k_{1}k_{3} + k_{1}k_{2} + k_{2}k_{3}) + 2(k_{1} + k_{2} + k_{3})}\,. \end{split}$$

Заключение

В работе исследованы характеристики избыточности при преобразовании простых прямоугольных n-мерных решёток в 1-отказоустойчивые минимальные графы. Полученные оценки являются верхними границами избыточности при преобразовании в 1-отказоустойчивый граф любого графа, вложимого в рассмотренные решётки. Одно из направлений дальнейших исследований состоит в оценке избыточности при преобразовании более сложных регулярных классических структур в 1-отказоустойчивые графы. Второе направление исследований состоит в изучении характеристик избыточности при преобразовании регулярных структур в m-отказоустойчивые графы, где $m \ge 2$.

ЛИТЕРАТУРА

- Каравай М.Ф. Общий подход к построению отказоустойчивых цифровых систем // Вестник ТГУ. Приложение. 2004.
 № 9. С. 123 134.
- Каравай М.Ф. Инвариантно-групповой подход к исследованию k-отказоустойчивых структур // Автоматика и телемеханика. 2000. № 1. С. 144 – 156.
- 3. *Каравай М.Ф.* Применение теории симметрии к анализу и синтезу отказоустойчивых систем // Автоматика и телемеханика. 1996. № 6. С. 159 173.
- 4. Bollobas B. Modern graph theory. N.Y.: Springer Verlag, 1998. 394 p.