2009 Теоретические основы прикладной дискретной математики

№3(5)

DOI 10.17223/20710410/5/3

УДК 519.7

О СЛОЖНОСТИ МЕТОДА ФОРМАЛЬНОГО КОДИРОВАНИЯ ПРИ АНАЛИЗЕ ГЕНЕРАТОРА С ПОЛНОЦИКЛОВОЙ ФУНКЦИЕЙ ПЕРЕХОДОВ¹

В. М. Фомичёв

Институт проблем информатики РАН, г. Москва, Россия

E-mail: fomichev@nm.ru

Исследованы генераторы гаммы (автономные автоматы), множество состояний которых есть пространство двоичных n-мерных векторов, и функция переходов реализует полноцикловую подстановку множества состояний. Оценивается сложность T_n решения системы уравнений гаммообразования (без ограничения на число уравнений) относительно неизвестного начального состояния методом формального кодирования. Оценка получена с помощью определения линейной сложности и порядка множества мономов для последовательности выходных функций генератора. Показано, что $TL(2^{n-1}) < T_n < TL(2^n)$, где TL(m) — сложность решения над GF(2) системы из m линейных уравнений от m неизвестных. Данный класс генераторов порождает, в частности, нормальные рекуррентные последовательности над полем GF(2) (последовательности де Брёйна).

Ключевые слова: моном, аннулирующий полином, линейная оболочка.

1. Характеристики, определяющие сложность решения систем уравнений методом формального кодирования

Метод формального кодирования [1] применим для решения любой системы уравнений над конечным полем [2]. Вместе с тем трудоемкость метода меньше трудоемкости метода полного перебора только для частных классов систем уравнений. Определим характеристики системы уравнений, важные для оценки сложности ее решения методом формального кодирования.

Обозначим: M_n — множество всех мономов, зависящих от переменных x_1 , ..., x_n ; $M_{n,d}$ — его подмножество всех мономов степени d, $0 \leqslant d \leqslant n$. Отсюда $M_n = \bigcup_{d=0}^n M_{n,d}$, где $M_{n,0} = \{1\}$ и при $d \geqslant 1$

$$M_{n,d} = \{x_{j_1} \dots x_{j_d} : \{j_1, \dots, j_d\} \subseteq \{1, \dots, n\}, j_1 < \dots < j_d\}.$$

Определим на M_n частичный порядок: $x_{j_1} \dots x_{j_d} \leqslant x_{s_1} \dots x_{s_\ell} \Leftrightarrow \{j_1, \dots, j_d\} \subseteq \{s_1, \dots, s_\ell\}$. Заметим, что M_n — решётка, изоморфная решётке V_n булевых векторов длины n, где вектору $\delta = (\delta_1, \dots, \delta_n)$ из V_n биективно соответствует моном $x^\delta = x_1^{\delta_1} \dots x_n^{\delta_n}$ из M_n , при этом для $j = 1, \dots, n$

$$x_j^{\delta_j} = \begin{cases} x_j, & \delta_j = 1, \\ 1, & \delta_j = 0. \end{cases}$$

Единицей и нулём решётки V_n являются соответственно векторы $e_n=(1\,,\,\ldots\,,\,1)$ и $u_n=(0\,,\,\ldots\,,\,0),$ единицей и нулём решётки M_n — мономы $x^{e_n}=x_1\ldots x_n$ и $x^{u_n}=1.$

 $^{^{1}}$ Результаты работы докладывались на Международной конференции с элементами научной школы для молодёжи, г. Омск, 7–12 сентября 2009 г.

Рассмотрим систему m уравнений от n неизвестных, заданную полиномами над GF(2):

$$\begin{cases}
f_1(x_1, \dots, x_n) = a_1, \\
f_2(x_1, \dots, x_n) = a_2, \\
\dots \\
f_m(x_1, \dots, x_n) = a_m.
\end{cases}$$
(1)

Левая часть системы (1) (система булевых полиномов) определяет отображение $F_{m,n}(x_1,\ldots,x_n)\colon V_n\to V_m$, правая часть — вектор $a=(a_1,\ldots,a_m)\in V_m$. Кратко систему уравнений (1) запишем как $F_{m,n}=a$.

Обозначим: $M(f(x_1,\ldots,x_n))$ (кратко M(f)) — множество мономов ненулевой степени полинома $f(x_1,\ldots,x_n)$; $M(F_{m,n})=\bigcup_{i=1}^m M(f_i(x_1,\ldots,x_n))$ — множество мономов ненулевой степени системы координатных полиномов отображения $F_{m,n}$ (системы уравнений (1)). Для полинома $f(x_1,\ldots,x_n)$ и для системы полиномов $F_{m,n}$ над GF(2) величины |M(f)| и $|M(F_{m,n})|$ называются весом полинома $f(x_1,\ldots,x_n)$ и весом системы полиномов $F_{m,n}$ и обозначаются wp(f) и $wp(F_{m,n})$ соответственно.

Для решения системы уравнений (1) методом формального кодирования выполняется замена переменных. Каждый ненулевой моном из $M(F_{m,n})$ заменяется новой переменной: $x_{i_1} \dots x_{i_s} = z_j$, после чего система уравнений $F_{m,n} = a$ преобразуется в линейную систему $L_{m,\nu} = a$ от переменных z_1, \dots, z_{ν} , где $\nu = wp(F_{m,n})$ и $L_{m,\nu}$ — система m булевых линейных полиномов от ν переменных.

Систему линейных уравнений $L_{m,\nu}=a$ можно решать известными методами. При решении совместной системы уравнений достаточно рассматривать лишь максимальную подсистему из μ линейно независимых уравнений, где $\mu=\dim\langle F_{m,n}\rangle$ — размерность линейной оболочки системы полиномов $F_{m,n}$ или, что равносильно, число линейно независимых строк матрицы $L_{m,\nu}$. Сложность решения совместной системы уравнений полиномиально зависит от μ и ν . Например, метод Гаусса имеет сложность порядка $\max\{\mu,\nu\}\cdot(\min\{\mu,\nu\})^2$ операций поля $\mathrm{GF}(2)$, в частности порядка ν 3, если $\mu=\nu$. Сложность решения линейной системы другими методами также определяется величинами ν и μ .

2. Постановка задачи

Рассмотрим генератор двоичной гаммы, моделируемый автономным автоматом $A = (V_n, V_1, h, f)$, где V_n — множество состояний; V_1 — выходной алфавит; f — функция выходов; h — функция переходов, реализующая полноцикловую подстановку множества V_n .

Уравнения гаммообразования автомата A описываются системой уравнений (1), где $a \in V_m$ и $f_i(x_1, \ldots, x_n)$ есть i-я выходная функция автомата A, определенная равенством: $f_i(x_1, \ldots, x_n) = f(h^i(x_1, \ldots, x_n)), i = 1, \ldots, m$. Отсюда гамма и последовательность $\{f_i(x_1, \ldots, x_n)\}$ выходных функций автомата являются чисто периодическими последовательностями; длины их периодов совпадают и делят 2^n . Пусть длины их периодов равны 2^t , где $1 < t \le n$.

Требуется оценить сложность определения начального состояния генератора методом формального кодирования по известному периоду гаммы, где под периодом чисто периодической последовательности с длиной периода ℓ понимается любой ее отрезок длины ℓ . Следовательно, требуется определить (оценить) $\dim \langle F_{2\tau,n} \rangle$ и $|M(F_{2\tau,n})|$, где $\tau = 2^{t-1}$.

3. Размерность линейной оболочки системы выходных функций

Пусть r — натуральное число, $W = \{w_i\}$ — чисто периодическая последовательность над V_r с длиной периода $2\tau = 2^t$, где $\tau > 1$, $m_W(\lambda)$ — минимальный многочлен (над $\mathrm{GF}(2)$) последовательности W. Длину периода периодической последовательности W обозначим рег W.

Последовательность W назовём компенсированной, если $w_1 \oplus \cdots \oplus w_{2\tau} = u_r$, где u_r — нуль пространства V_r .

Теорема 1.

а)
$$m_W(\lambda) = (\lambda \oplus 1)^s$$
, где $\tau + 1 \leqslant s \leqslant 2\tau - \varepsilon(W)$ и

$$\varepsilon(W) = \left\{ egin{array}{ll} 0, & \text{если } W & \text{не компенсированная}, \\ 1, & \text{если } W & \text{компенсированная}; \end{array} \right.$$

при этом $s = \tau + 1$, если $w_i \oplus w_{i+\tau} = \alpha$ при некотором $\alpha \neq u_r$ и при всех $i = 1, \ldots, \tau$.

б) Если многочлен $\psi(\lambda) = p_0 \oplus p_1 \lambda \oplus \cdots \oplus p_k \lambda^k$ аннулирует последовательность W и $k < 2\tau$, то вес $wp(\psi(\lambda))$ чётен и выполнены равенства: $p_j = p_{j+\tau}, j = 0, 1, \ldots, k-\tau$; $p_j = 0, j = k-\tau+1, \ldots, \tau-1$.

Доказательство.

а) По условию длина периода последовательности W равна 2τ ; следовательно, W аннулируется многочленом $\lambda^{2\tau} \oplus 1$, каноническое разложение которого на неприводимые множители есть $(\lambda \oplus 1)^{2\tau}$. Так как $m_W(\lambda)$ делит $(\lambda \oplus 1)^{2\tau}$, то $m_W(\lambda) = (\lambda \oplus 1)^s$, где $s \leq 2\tau$. Вместе с тем $s > \tau$, так как иначе последовательность W аннулируется многочленом $(\lambda \oplus 1)^{\tau}$, где $(\lambda \oplus 1)^{\tau} = \lambda^{\tau} \oplus 1$. Последнее означало бы, что длина периода последовательности W не больше τ , что противоречит условию.

Для компенсированной последовательности W верхнюю оценку линейной сложности можно уточнить: W аннулируется многочленом $1 \oplus \lambda \oplus \cdots \oplus \lambda^{2\tau-1}$, каноническое разложение которого на неприводимые множители есть $(\lambda \oplus 1)^{2\tau-1}$. Следовательно, в этом случае $m_W(\lambda) = (\lambda \oplus 1)^s$, где $s \leq 2\tau - 1$.

При условии $w_i \oplus w_{i+\tau} = \alpha$ нижняя оценка для s достигается, так как при всех $i=1,\ldots,2\tau$ выполняется

$$w_{i+\tau+1} \oplus w_{i+\tau} \oplus w_{i+1} \oplus w_i = (w_{i+\tau+1} \oplus w_{i+1}) \oplus (w_{i+\tau} \oplus w_i) = \alpha \oplus \alpha = u_r.$$

Отсюда многочлен $\lambda^{\tau+1} \oplus \lambda^{\tau} \oplus \lambda \oplus 1$, разложение которого на неприводимые множители есть $(\lambda \oplus 1)^{\tau+1}$, аннулирует последовательность W и является минимальным многочленом для W в соответствии с доказанной нижней оценкой для s.

б) Из утверждения a теоремы следует: $m_W(\lambda) = (\lambda^{\tau} \oplus 1)(\lambda \oplus 1)^{s-\tau}$, где $\tau + 1 \leq s < 2\tau$. Любой многочлен $\psi(\lambda)$, аннулирующий последовательность W, кратен многочлену $m_W(\lambda)$, то есть $\psi(\lambda) = m_W(\lambda)\varphi(\lambda)$ при некотором ненулевом многочлене $\varphi(\lambda)$. Поэтому если $\deg \psi(\lambda) = k \leq 2\tau - 1$, то

$$\psi(\lambda) = (\lambda^{\tau} \oplus 1)q(\lambda), \tag{2}$$

где $\deg q(\lambda) = k - \tau$ и $q(\lambda) = (\lambda \oplus 1)^{s-\tau} \varphi(\lambda)$. Если $q(\lambda) = q_0 \oplus q_1 \lambda \oplus \cdots \oplus q_{k-\tau} \lambda^{k-\tau}$, то из (2) следует, что $p_j = p_{j+\tau} = q_j, \ j = 0, 1, \ldots, k - \tau; \ p_j = 0, \ j = k - \tau + 1, \ldots, \tau - 1$. Из (2) следует также, что $wp(\psi(\lambda)) = 2wp(q(\lambda))$, поэтому $wp(\psi(\lambda))$ чётен.

Следствие. Для последовательности выходных функций автомата A выполнено

$$2\tau \geqslant \dim \langle F_{2\tau,n} \rangle \geqslant \tau + 1.$$

Доказательство. Последовательность $\{f_i(x_1,\ldots,x_n)\}$ выходных функций автомата чисто периодическая, поэтому ее линейная оболочка совпадает с $\langle F_{2\tau,n}\rangle$ — с линейной оболочкой ее периода. По теореме 7.1 [3] $\dim \langle F_{2\tau,n}\rangle = \deg m_f(\lambda)$, где $m_f(\lambda)$ — минимальный многочлен последовательности $\{f_i(x_1,\ldots,x_n)\}$. В соответствии с утверждением a теоремы $2\tau \geqslant \deg m_f(\lambda) \geqslant \tau + 1$. Следовательно, $2\tau \geqslant \dim \langle F_{2\tau,n}\rangle \geqslant \tau + 1$.

4. Свойства системы полиномов выходных функций автомата

Для автомата A обозначим чисто периодические последовательности: $W(h) = \{h^i(u_n)\}$ — последовательность состояний при начальном состоянии u_n ; $f(W(h)) = \{f(h_i(u_n))\}$ — соответствующая ей выходная последовательность; $H = \{h^i\}$ — последовательность степеней подстановки h; $f(H) = \{f(h^i)\}$ — соответствующая ей последовательность выходных функций, $i = 0, 1, 2, \dots$ Заметим, что период последовательности H совпадает с циклической группой подстановок $\langle h \rangle$ порядка 2^n .

Отметим свойства этих последовательностей:

- 1) $per W(h) = per H = 2^n;$
- 2) $\operatorname{per} f(W(h)) = \operatorname{per} f(H) = 2\tau$, где $1 < \tau \leqslant 2^{n-1}$;
- 3) $m_{W(h)}(\lambda) = m_H(\lambda);$
- 4) $m_{f(W(h))}(\lambda) = m_{f(H)}(\lambda);$
- 5) $M(f(H)) = M(F_{2\tau,n}).$

Обозначим: $M_d(f(H)) = M_{n,d} \cap M(f(H))$ — множество всех мономов степени d, содержащихся в совокупности полиномов выходных функций из последовательности f(H), $0 \le d \le n$. Отсюда

$$M(f(H)) = \bigcup_{d=1}^{n} M_d(f(H)).$$

На периоде последовательности W(h) определим порядковый номер вектора $\gamma \in V_n$ (обозначим его $n(\gamma)$): $n(u_n) = 0$, $n(\gamma)$ — наименьшее натуральное число t, такое, что $h^t(u_n) = \gamma$.

Для монома x^{δ} степени d > 0, где $\delta \in V_n$, определим многочлен $\psi_{\delta}(\lambda)$ над GF(2), зависящий от функций h и f автомата A:

$$\psi_{\delta}(\lambda) = \bigoplus_{\gamma \leqslant \delta} \lambda^{\nu(\gamma)},\tag{3}$$

где $\nu(\gamma)$ — наименьший неотрицательный вычет числа $n(\gamma)$ по $\operatorname{mod}(2\tau)$; символом \leq обозначено стандартное отношение частичного порядка на решётке V_n . Многочлен $\psi_{\delta}(\lambda)$ назовем A-многочленом монома x^{δ} .

Отметим некоторые свойства A-многочленов мономов:

- 1) $\deg \psi_{\delta}(\lambda) < 2\tau$;
- 2) $wp(\psi_{\delta}(\lambda)) \leq 2^{d}$ и является чётным;
- 3) $wp(\psi_{\delta}(\lambda)) = 2^d \Leftrightarrow$ в последовательности W(h) номера любых двух не превосходящих δ векторов не сравнимы по $\operatorname{mod}(2\tau)$;
- 4) $wp(\psi_{\delta}(\lambda)) = 0 \Leftrightarrow$ множество $\{n(\gamma) : \gamma \leqslant \delta\}$ есть совокупность 2^{d-1} пар чисел, где числа в каждой паре сравнимы по модулю 2τ .

Обозначим: $g = h^{\tau}$. Заметим, что подстановка g состоит из τ циклов длины $2^{n}/\tau$.

Лемма 1.

а) Моном x^{δ} степени d>0 не содержится в $M(f(H))\Leftrightarrow A$ -многочлен монома x^{δ} либо нулевой, либо аннулирующий для последовательности f(H).

б) Если $\psi_{\delta}(\lambda)$ аннулирует последовательность f(H) и $\gamma \leqslant \delta$ для γ , $\delta \in V_n$, то и $g(\gamma) \leqslant \delta$.

Доказательство.

а) В полиноме Жегалкина булевой функции φ коэффициент $a_{\delta}(\varphi)$ при мономе x^{δ} равен булевой сумме 2^d элементов её табличного задания [3], формула (3.16):

$$a_{\delta}(\varphi) = \bigoplus_{\gamma \leqslant \delta} \varphi(\gamma).$$

Преобразуем это равенство, используя порядковые номера векторов:

$$a_{\delta}(\varphi) = \bigoplus_{\gamma \leqslant \delta} \varphi(h^{n(\gamma)}(u_n)).$$

Отсюда имеем, в частности, равенства для коэффициентов выходных функций f_i , $i=0,1,2,\ldots$:

$$a_{\delta}(f_i) = \bigoplus_{\gamma \leqslant \delta} f(h^i(h^{n(\gamma)}(u_n))) = \bigoplus_{\gamma \leqslant \delta} f(h^{i+n(\gamma)}(u_n)).$$

Так как per $f(W(h)) = 2\tau$, то $f(h^{i+n(\gamma)}) = f(h^{i+\nu(\gamma)})$, $i = 0, 1, 2, \ldots$, следовательно,

$$a_{\delta}(f_i) = \bigoplus_{\gamma \leq \delta} f(h^{i+\nu(\gamma)}(u_n)). \tag{4}$$

По определению $x^{\delta} \not\in M(f(H)) \Leftrightarrow a_{\delta}(f_i) = 0, i = 0, 1, 2, \dots$ Отсюда в соответствии с (3) следует, что $x^{\delta} \not\in Mf(H)) \Leftrightarrow A$ -многочлен монома x^{δ} либо является нулевым, либо аннулирующим последовательность f(H) (а также и f(W(h)), так как $m_{f(W(h))}(\lambda) = m_{f(H)}(\lambda)$).

б) В соответствии с определением подстановки g номера $n(\gamma)$ и $n(g(\gamma))$ сравнимы по модулю τ и не сравнимы по модулю 2τ , поэтому $\nu(\gamma)$ и $\nu(g(\gamma))$ также сравнимы по модулю τ . Отсюда если многочлен $\psi_{\delta}(\lambda)$ аннулирует последовательность f(H) (а также f(W(h))), где $\deg \psi_{\delta}(\lambda) < 2\tau$, то из утверждения δ теоремы 1 и равенства (3) вытекает, что если $\lambda^{\nu(\gamma)}$ — моном многочлена $\psi_{\delta}(\lambda)$, то и $\lambda^{\nu(g(\gamma))}$ также моном многочлена $\psi_{\delta}(\lambda)$. По построению многочлена $\psi_{\delta}(\lambda)$ это равносильно тому, что если $\gamma \leqslant \delta$, то и $g(\gamma) \leqslant \delta$.

Для монома x^{δ} обозначим

$$U_n(x^{\delta}) = \{ \xi \in M_n : x^{\delta} \leqslant \xi \}; \ \overline{U}_n(x^{\delta}) = M_n \setminus U_n(x^{\delta}).$$

При любом δ из V_n множество $\overline{U}_n(x^\delta)$ не содержит монома x^{e_n} и множество $U_n(x^\delta)$ не пусто и образует в M_n подрешётку, изоморфную решётке $M_{n-\|\delta\|}$, где $\|\delta\|$ — вес двоичного вектора δ .

Обозначим также: $M_n(\gamma,\beta) = (U_n(x^{\gamma}) \cap \overline{U}_n(x^{\beta})) \cup (U_n(x^{\beta}) \cap \overline{U}_n(x^{\gamma}))$, где $\gamma,\beta \in V_n$. **Теорема 2.**

- а) Множество M(f(H)) содержит $M(f(x_1, \ldots, x_n))$ и все мономы степени d>0 из $\bigcup_{\gamma \in V_n} M_n(\gamma, g(\gamma))$ с ненулевым A-многочленом.
 - б) Моном $x^{e_n} \in M(f_i(x_1, \ldots, x_n)), i = 1, 2, \ldots \Leftrightarrow x^{e_n} \in M(f(H)) \Leftrightarrow ||f||$ нечетен.

Доказательство.

а) Последовательность H содержит тождественную подстановку, поэтому последовательность f(H) содержит функцию $f(x_1, \ldots, x_n)$. Следовательно, $M(f(x_1, \ldots, x_n)) \subseteq M(f(H))$.

При любом $\gamma \in V_n$ для векторов γ и $g(\gamma)$ не выполнены одновременно отношения $\gamma \leqslant g(\gamma)$ и $g(\gamma) \leqslant \gamma$, так как $\gamma \neq g(\gamma)$ в соответствии с определением подстановки g. Пусть, например, не выполнено отношение $g(\gamma) \leqslant \gamma$, тогда из определения множества $M_n(\gamma,g(\gamma))$ следует, что множество $U_n(x^\gamma) \cap \overline{U}_n(x^{g(\gamma)})$ содержит моном x^γ и, следовательно, не пусто. Если $x^\delta \in U_n(x^\gamma) \cap \overline{U}_n(x^{g(\gamma)})$ при некоторых $\delta, \gamma \in V_n$, то $x^\delta \in U_n(x^\gamma)$ и $x^\delta \in \overline{U}_n(x^{g(\gamma)})$. Отсюда следует, что $\gamma \leqslant \delta$ в силу определения множества $U_n(x^\gamma)$ и отношение $g(\gamma) \leqslant \delta$ не выполнено в силу определения множества $\overline{U}_n(x^{g(\gamma)})$.

Если для монома x^{δ} степени d>0 A-многочлен $\psi_{\delta}(\lambda)$ ненулевой и $x^{\delta}\notin M(f(H))$, то по утверждению a леммы 1 $\psi_{\delta}(\lambda)$ аннулирует последовательность f(H) и по утверждению δ леммы 1 если $\gamma\leqslant \delta$, то и $g(\gamma)\leqslant \delta$, что противоречит условию. Значит, если $\psi_{\delta}(\lambda)$ — ненулевой многочлен, то $x^{\delta}\in M(f(H))$.

Включение $x^{\delta} \in M(f(H))$ для монома x^{δ} из $U_n(x^{g(\gamma)}) \cap \overline{U}_n(x^{\gamma})$ (если не выполнено отношение $\gamma \leqslant g(\gamma)$) доказывается аналогично. Заметим, что рассуждения верны для произвольного вектора γ .

б) В полиноме булевой функции коэффициент при мономе x^{e_n} равен $1 \Leftrightarrow$ вес функции нечетен (теорема 3.11 [3]). Осталось заметить, что веса всех выходных функций автомата равны ||f|| в силу эквивалентности этих функций относительно группы подстановок $\langle h \rangle$.

Замечание. Если векторы γ и $g(\gamma)$ сравнимы, например $\gamma \leqslant g(\gamma)$, то $U_n(x^{g(\gamma)}) \cap \overline{U}_n(x^{\gamma}) = \emptyset$ и $M_n(\gamma, g(\gamma)) = U_n(x^{\gamma}) \cap \overline{U}_n(x^{g(\gamma)})$.

Следствие 1. Если $g(u_n) = \beta$, то M(f(H)) содержит все мономы из $\overline{U}_n(x^\beta)$ с ненулевым A-многочленом; если при этом $\|\beta\| = r$ и каждый моном из $\overline{U}_n(x^\beta)$ имеет ненулевой A-многочлен, то

$$|M_d(f(H))| \ge \begin{cases} C_n^d, & 1 \le d < r, \\ C_n^d - C_{n-r}^{d-r}, & r \le d < n. \end{cases}$$
 (5)

Доказательство. Так как $u_n \leqslant \beta$, то $M_n(u_n,\beta) = U_n(x^{u_n}) \cap \overline{U}_n(x^\beta)$ в силу замечания к теореме 2. При этом $U_n(x^{u_n}) = M_n$, значит, $M_n(u_n,\beta) = \overline{U}_n(x^\beta)$, и по утверждению a теоремы 2 если моном x^δ из $\overline{U}_n(x^\beta)$ имеет ненулевой A-многочлен, то $x^\delta \in M(f(H))$.

По определению $\overline{U}_n(x^\beta) = M_n \backslash U_n(x^\beta)$. Поэтому если все мономы из $\overline{U}_n(x^\beta)$ имеют ненулевые A-многочлены, то по утверждению a теоремы $2 |M_d(f(H))|$ оценивается снизу числом мономов степени d, которые не больше монома x^β степени r. К таким мономам относятся все мономы степени d, если d < r, и если $d \geqslant r$, — все мономы степени d за исключением тех, которые превосходят фиксированный моном x^β степени r.

Следствие 2. Если $g(e_n) = \alpha$, то M(f(H)) содержит все мономы из $U_n(x^{\alpha}) \setminus \{x^{e_n}\}$ с ненулевым A-многочленом; если при этом $\|\alpha\| = r$ и каждый моном из $U_n(x^{\alpha}) \setminus \{x^{e_n}\}$ имеет ненулевой A-многочлен, то

$$|M_d(f(H))| \geqslant \begin{cases} 0, & 1 \leqslant d < r, \\ C_{n-r}^{d-r}, & r \leqslant d < n. \end{cases}$$

$$(6)$$

Доказательство. Так как $\alpha \leqslant e_n$, то $M_n(\alpha,e_n) = U_n(x^\alpha) \cap \overline{U}_n(x^{e_n})$ в силу замечания к теореме 2. При этом $\overline{U}_n(x^{e_n}) = M_n \setminus \{x^{e_n}\}$, значит, $M_n(\alpha,e_n) = U_n(x^\alpha) \setminus \{x^{e_n}\}$, и по утверждению a теоремы 2 если моном x^δ из $U_n(x^\alpha) \setminus \{x^{e_n}\}$ имеет ненулевой A-многочлен, то $x^\delta \in M(f(H))$.

Если все мономы x^{δ} из $U_n(x^{\alpha})\setminus\{x^{e_n}\}$ имеют ненулевые A-многочлены, то по утверждению a теоремы $2 |M_d(f(H))|$ оценивается снизу числом мономов степени d, которые не меньше монома x^{α} степени r, где $d \geqslant r$.

Из следствий 1 и 2 теоремы 2 получаем оценку множества M(f(H)). Обозначим для $\alpha, \beta \in V_n$:

$$M_n(\beta/u, \alpha/e) = \overline{U}_n(x^\beta) \cup U_n(x^\alpha) \setminus \{x^{e_n}\}.$$

Заметим, $M_n(\beta/u, \alpha/e) = M_n \setminus \{x^{e_n}\}$ при $\alpha \leqslant \beta$.

Следствие 3. Если $g(u_n) = \beta$, $g(e_n) = \alpha$, то M(f(H)) содержит все мономы из $M_n(\beta/u, \alpha/e)$ с ненулевым A-многочленом.

Теорема 3. Если per $f(H) = 2^n$, то:

- a) $|M(f(H))| \ge 2^{n-1}$;
- б) при случайном равновероятном выборе h из класса всех полноцикловых подстановок

$$E|M(f(H))| \ge 2^n - (1.5)^n + (1.25)^n$$

где $E\zeta$ — математическое ожидание случайной величины ζ .

Доказательство.

а) Для любой полноцикловой подстановки h подстановка g не содержит единичных циклов, поэтому $||g(u_n)|| \ge 1$. Пусть $g(u_n) = \beta = (\beta_1, \ldots, \beta_n)$ и для определённости $\beta_1 = 1$.

Если рег $f(H)=2^n$, то любой моном степени d>0 имеет ненулевой A-многочлен, и при указанном векторе β множество $\overline{U}_n(x^\beta)$ содержит все мономы, не зависящие от x_1 . Следовательно, $|M_n(\alpha/e,\beta/u)|\geqslant |\overline{U}_n(x^\beta)|\geqslant 2^{n-1}$. Отсюда $|M(f(H))|\geqslant 2^{n-1}$ в соответствии со следствием 3 теоремы 2.

б) При случайном равновероятном выборе h из класса всех полноцикловых подстановок множества V_n пара векторов (α,β) , где $\alpha=g(e_n),\ \beta=g(u_n)$, есть равновероятная бесповторная выборка из множества $(V_n\setminus\{u_n,e_n\})$. Число таких выборок равно $(2^n-2)(2^n-3)$.

Пусть для векторов α, β решётки V_n выполнено: $\|\alpha\| = r$, $\|\beta\| = p$, $\|\inf(\alpha, \beta)\| = k$, тогда $\|\sup(\alpha, \beta)\| = r + p - k$. Число пар таких векторов из V_n , обозначаемое N(r, p, k), равно

$$N(r, p, k) = C_n^r \cdot C_r^k \cdot C_{n-r}^{p-k}.$$

Для такой пары векторов α , β выполнено

$$|\overline{U}_n(x^\beta)| = 2^n - 2^{n-p},$$

$$\left| (U_n(x^{\alpha}) \setminus \{x^{e_n}\}) \setminus \overline{U}_n(x^{\beta}) \right| = \left| U_n(x^{\sup(\alpha,\beta)}) \setminus \{x^{e_n}\} \right| = 2^{n-r-p+k} - 1,$$

$$\left| M_n(\alpha/e, \beta/u) \right| = \left| \overline{U}_n(x^{\beta}) \right| + \left| (U_n(x^{\alpha}) \setminus \{x^{e_n}\}) \setminus \overline{U}_n(x^{\beta}) \right| = 2^n - 2^{n-p} + 2^{n-r-p+k} - 1.$$

Следовательно, при случайном равновероятном выборе h из класса всех полноцикловых подстановок множества V_n среднее значение $|M_n(\alpha/e,\beta/u)|$ определяется формулой (используем принцип включения-исключения с учетом, что α,β,e_n,u_n суть различные векторы из V_n)

$$E |M_n(\alpha/e, \beta/u)| = \frac{1}{(2^n - 2)(2^n - 3)} \left[\sum_{r=0}^n \sum_{k=0}^r \sum_{p-k=0}^{n-r} N(r, p, k) (2^n - 2^{n-p} + 2^{n-r-p+k} - 1) - \frac{1}{(2^n - 2)(2^n - 3)} \right]$$

$$-\sum_{p=0}^{n} N(0, p, 0)(2^{n} - 1) - \sum_{p=0}^{n} N(n, p, p)(2^{n} - 2^{n-p}) - \sum_{r=0}^{n} N(r, 0, 0)(2^{n-r} - 1) - \sum_{p=0}^{n} N(n, p, p)(2^{n} - 2^{n-p}) - \sum_{r=0}^{n} N(n, p, p)(2^{n-r} - 1) - \sum_{p=0}^{n} N(n, p, p)(2^{n} - 2^{n-p}) -$$

$$-\sum_{r=0}^{n} N(r,n,r)(2^{n}-1) + (N(0,0,0) + N(0,n,0) + N(n,0,0) + N(n,n,n))(2^{n}-1) \bigg].$$

Подсчёт сумм с использованием формулы бинома Ньютона даёт следующий результат:

$$E |M_n(\alpha/e, \beta/u)| = \frac{8^n - 6^n + 5^n - 4^{n+1} + 6 \cdot 2^n - 3}{(2^n - 2)(2^n - 3)}.$$

Отсюда получаем требуемую оценку.

Пример. Пусть функция переходов h автомата A реализуется линейным конгруэнтным генератором: $h(x) = (x+1) \mod 2^n$. Для подстановки h множества V_n выполнено:

- 1) per $W_i(h) = \text{per } W_i(H) = 2^j, j = 1, ..., n;$
- 2) пусть per $f(H) = 2^n$, тогда $\tau = 2^{n-1}$, $h(x) \oplus h^{\tau}(x) = (0, ..., 0, 1)$ при любом $x \in V_n$. Последовательность f(H) имеет алгебраические характеристики:
 - 1) $m_H(\lambda) = (\lambda \oplus 1)^{\tau+1}$ по утверждению a теоремы 1;
- 2) M(H) содержит множество всех мономов от $x_1, ..., x_{n-1}$ по утверждению a теоремы 2;
 - 3) $\deg W_n(H) = n 1$.

Выводы

- 1. Последовательность выходных функций генератора гаммы, построенного на основе полноцикловой подстановки множества состояний V_n , имеет высокую линейную сложность Λ , а именно $2^{n-1}+1\leqslant \Lambda\leqslant 2^n$.
- 2. Для порядка множества мономов на периоде последовательности выходных функций генератора верны оценки: $2^{n-1} \leq |M(f(H))| \leq 2^n 1$. При $n \to \infty$ и при случайном равновероятном выборе функции переходов h из класса всех полноцикловых подстановок множества V_n математическое ожидание величины $|M(f(H))|/(2^n-1)$ стремится к 1.
- 3. Сложность T_n определения начального состояния генератора методом формального кодирования по известному периоду гаммы удовлетворяет оценкам

$$TL(2^{n-1}) < T_n < TL(2^n),$$

где TL(m) — сложность решения над GF(2) системы из m линейных уравнений от m неизвестных.

ЛИТЕРАТУРА

- 1. Schaumuller-Bichl. Cryptanalysis of the Data Encryption Standard by a method of formal coding // Cryptography, Proc. Burg Feuerstein 1982. LNCS. 1983. V. 149. P. 235–255.
- 2. Courtois N., Klimov A., Patarin J., Shamir A. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations // LNCS. 2000. V. 1807. P. 392–407.
- 3. Фомичёв В. М. Дискретная математика и криптология. М.: ДИАЛОГ-МИФИ, 2003. 400 с.