Вычислительные методы в дискретной математике

Nº4(6)

DOI 10.17223/20710410/6/8

УДК 518.6+681.3

2009

«ЛЕНТОЧНАЯ» ТЕОРЕМА И ЕЕ ПРИЛОЖЕНИЯ

В. В. Скобелев

Институт прикладной математики и механики НАН Украины, г. Донецк, Украина

E-mail: vv skobelev@iamm.ac.donetsk.ua

Предлагается общий метод подсчета числа элементов конечных множеств, определенных в терминах классов вычетов, при помощи набора размеченных лент.

Ключевые слова: классы вычетов, системы сравнений.

1. Базовая конструкция

Объектом исследования является следующая «ленточная конструкция».

Под лентой будем понимать одностороннюю бесконечную (вправо) ленту, разбитую на идентичные клетки, занумерованные (слева направо) неотрицательными целыми числами (т. е. элементами множества \mathbb{Z}_+).

Зафиксируем число $n \in \mathbb{N}$ и расположим одну под другой n+1 лент, перенумеровав их сверху вниз числами $1,2,\ldots,n+1$. Ленты с номерами $1,2,\ldots,n$ назовем рабочими лентами, а ленту с номером n+1 — результирующей лентой.

Пусть a_1, \ldots, a_n — попарно взаимно простые натуральные числа, а b_1, \ldots, b_n — такие неотрицательные целые числа, что $b_i \leqslant a_i$ для всех $i = 1, \ldots, n$.

Отметим клетки лент маркером в соответствии со следующими тремя правилами. Правило 1. На i-й $(i=1,\ldots,n)$ рабочей ленте среди первых a_i клеток отметим маркером произвольные b_i клеток.

Правило 2. На i-й $(i=1,\ldots,n)$ рабочей ленте клетка с номером h $(h\geqslant a_i)$ отмечена маркером тогда и только тогда, когда клетка с номером h mod a_i отмечена маркером.

Правило 3. На результирующей ленте клетка с номером $j \in \mathbb{Z}_+$ отмечена маркером тогда и только тогда, когда клетка с номером j отмечена маркером на каждой рабочей ленте.

Обозначим через \mathbf{L}_i $(i=1,\ldots,n+1)$ начальный отрезок i-й ленты, состоящий из первых $\prod\limits_{i=1}^n a_i$ клеток.

Назовем «ленточной конструкцией» упорядоченный набор лент

$$(L_1,\ldots,L_{n+1}).$$

Покажем, что «ленточная конструкция» применима для подсчета числа элементов конечных множеств, определенных в терминах классов вычетов.

2. «Ленточная» теорема

Следующая теорема характеризует количество отмеченных клеток результирующей ленты в «ленточной конструкции» (L_1, \ldots, L_{n+1}) .

Теорема 1. В точности $\prod_{i=1}^{n} b_i$ клеток результирующей ленты L_{n+1} отмечены маркером.

Доказательство. Из определения «ленточной конструкции» (L_1, \ldots, L_{n+1}) вытекает, что процесс разметки клеток результирующей ленты L_{n+1} можно осуществить методом решета, состоящим из n этапов, причем на i-м этапе $(i=1,\ldots,n)$ участвует только результирующая лента L_{n+1} и i-я рабочая лента L_i . Эти этапы имеют следующий вид.

На 1-м этапе на результирующей ленте L_{n+1} маркером отмечаются те и только те клетки, для которых соответствующие клетки 1-й рабочей ленты L_1 отмечены маркером.

На i-м этапе $(i=2,\ldots,n)$ изменим разметку результирующей ленты L_{n+1} следующим образом: сотрем маркеры с тех и только тех клеток результирующей ленты L_{n+1} , для которых соответствующие клетки i-й рабочей ленты L_i не отмечены маркером.

Методом индукции подсчитаем число клеток, отмеченных маркером на результирующей ленте \mathbf{L}_{n+1} .

Рассмотрим 1-й этап. На этом этапе участвуют только 1-я рабочая лента L_1 и результирующая лента L_{n+1} , у которой ни одна из клеток не отмечена маркером.

Из правил 1 и 2 вытекает, что после 1-го этапа:

1) на результирующей ленте L_{n+1} отмечено маркером в точности $b_1 \cdot \prod_{j=2}^n a_j$ клеток, причем отмечены те и только те клетки, номера которых имеют вид

$$r + a_1 \cdot h \ (h = 0, 1, \dots, \prod_{j=2}^{n} a_j - 1),$$

где $r \ (0 \leqslant r \leqslant a_1 - 1)$ — номер отмеченной маркером клетки 1-й ленты;

2) среди первых a_1 клеток результирующей ленты L_{n+1} маркером отмечены в точности b_1 клеток.

Предположим, что после (i-1)-го этапа $(i=2,\ldots,n)$:

1) на результирующей ленте L_{n+1} отмечено маркером в точности $(\prod_{j=1}^{i-1} b_j) \cdot (\prod_{j=i}^n a_j)$ клеток, причем отмечены те и только те клетки, номера которых имеют вид

$$r_1 + (\prod_{j=1}^{i-1} a_j) \cdot h_1 \ (h_1 = 0, 1, \dots, \prod_{j=i}^{n} a_j - 1),$$

где r_1 $(0 \leqslant r_1 \leqslant \prod_{j=1}^{i-1} a_j - 1)$ — номер клетки, отмеченной маркером на каждой из лент $L_1, \ldots, L_{i-1};$

2) среди первых $\prod_{j=1}^{i-1} a_j$ клеток результирующей ленты \mathbf{L}_{n+1} маркером отмечены в точности $\prod_{j=1}^{i-1} b_j$ клеток.

Рассмотрим i-й этап $(i=2,\ldots,n)$. На этом этапе участвуют только i-я рабочая лента L_i и результирующая лента L_{n+1} .

Из правил 1 и 2 вытекает, что число отмеченных маркером клеток на ленте L_i равно $b_i \cdot (\prod_{j=1}^i a_j) \cdot (\prod_{j=i+1}^n a_j)$, причем на ленте L_i отмечены маркером те и только те клетки, номера которых имеют вид

$$r_2 + a_i \cdot h_2 \ (h_2 = 0, 1, \dots, (\prod_{j=1}^{i-1} a_j) \cdot (\prod_{j=i+1}^n a_j) - 1),$$

где r_2 ($0 \le r_2 \le a_i - 1$) — номер отмеченной маркером клетки ленты L_i . Рассмотрим фрагменты лент L_i и L_{n+1} , состоящие из первых

$$a_i \cdot \prod_{j=1}^{i-1} a_j = \prod_{j=1}^{i} a_j$$

клеток.

Зафиксируем номер $r_2 \ (0 \leqslant r_2 \leqslant a_i - 1)$ отмеченной маркером клетки ленты L_i .

Для каждого фиксированного номера r_1 $(0\leqslant r_1\leqslant\prod_{j=1}^{i-1}a_j-1)$ отмеченной маркером клетки ленты L_{n+1} числа

$$r_1 + (\prod_{j=1}^{i-1} a_j) \cdot h_1 \ (h_1 = 0, 1, \dots, a_i - 1)$$
 (1)

образуют полную систему вычетов по модулю a_i . Следовательно, только для одного из чисел (1) истинно сравнение

$$r_1 + (\prod_{j=1}^{i-1} a_j) \cdot h_1 \equiv r_2 \pmod{a_i}.$$

Итак, в результате выполнения i-го этапа каждая пара чисел

$$(r_1, r_2)$$
 $(0 \leqslant r_1 \leqslant \prod_{j=1}^{i-1} a_j - 1; \ 0 \leqslant r_2 \leqslant a_i - 1)$

определяет на фрагменте результирующей ленты $\mathsf{L}_{n+1},$ состоящем из первых $\prod\limits_{j=1}^i a_j$ клеток, единственную отмеченную маркером клетку.

Отсюда вытекает, что после выполнения i-го этапа на фрагменте результирующей ленты $\mathbf{L}_{n+1},$ состоящем из первых $\prod\limits_{j=1}^i a_j$ клеток, число отмеченных маркером клеток равно

$$\left(\prod_{j=1}^{i-1} b_j\right) \cdot b_i = \prod_{j=1}^{i} b_j.$$

На оставшейся части результирующей ленты \mathbf{L}_{n+1} эта разметка периодически повторяется. Следовательно, после выполнения i-го этапа общее число отмеченных маркером клеток результирующей ленты \mathbf{L}_{n+1} равно

$$\left(\prod_{j=1}^{i} b_{j}\right) \cdot \left(\prod_{j=i+1}^{n} a_{j}\right). \tag{2}$$

Положив i = n в (2), получим утверждение теоремы.

3. Приложения

Покажем, каким образом теорема 1 может быть применена при решении задач теории чисел, связанных с подсчетом количеств натуральных чисел, обладающих заданным свойством [1,2].

Пример 1. Докажем свойство *мультипликативности* функции Эйлера $\varphi(k)$ $(k \in \mathbb{N})$, определяющей количество чисел, взаимно простых с числом k и не превосходящих k, а именно: для любых взаимно простых чисел $l_1, l_2 \in \mathbb{N}$ истинно равенство

$$\varphi(l_1 \cdot l_2) = \varphi(l_1) \cdot \varphi(l_2).$$

Положим n=2 и рассмотрим «ленточную конструкцию»

$$(L_1, L_2, L_3),$$

где $a_i = l_i$ и $b_i = \varphi(l_i)$ для i = 1, 2.

Сформулируем правило 1 в следующем виде: на i-й (i=1,2) рабочей ленте среди первых a_i клеток маркером отмечены те и только те b_i клеток, номера которых—числа, взаимно простые с числом l_i .

Известно, что число a взаимно просто с числом $l_1 \cdot l_2$ тогда и только тогда, когда число a взаимно просто как с числом l_1 , так и с числом l_2 .

Отсюда вытекает, что в силу правила 3 клетка с номером r результирующей ленты L_3 отмечена маркером тогда и только тогда, когда число r взаимно просто с числом $l_1 \cdot l_2$.

Следовательно, число отмеченных маркером клеток результирующей ленты L_3 равно $\varphi(l_1 \cdot l_2)$.

Из теоремы 1 вытекает, что

$$\varphi(l_1 \cdot l_2) = b_1 \cdot b_2 = \varphi(l_1) \cdot \varphi(l_2),$$

что и требовалось доказать.

Пример 2. Докажем формулу Эйлера, а именно: если $m=p_1^{\alpha_1}\dots p_n^{\alpha_n}$, где p_1,\dots,p_n —попарно различные простые числа, то

$$\varphi(m) = m \cdot \prod_{i=1}^{n} (1 - p_i^{-1}).$$

Рассмотрим «ленточную конструкцию»

$$(L_1,\ldots,L_{n+1}),$$

где $a_i=p_i^{\alpha_i}$ и $b_i=\varphi(p_i^{\alpha_i})=p_i^{\alpha_i}-p_i^{\alpha_i-1}$ для всех $i=1,\dots,n.$

Сформулируем правило 1 в следующем виде: на i-й $(i=1,\ldots,n)$ рабочей ленте среди первых a_i клеток маркером отмечены те и только те b_i клеток, номера которых—числа, взаимно простые с числом p_i .

Отсюда вытекает, что в силу правила 3 клетка с номером r результирующей ленты L_{n+1} отмечена маркером тогда и только тогда, когда число r взаимно просто с каждым из чисел p_1, \ldots, p_n .

Следовательно, число отмеченных маркером клеток результирующей ленты L_{n+1} равно $\varphi(m)$.

Из теоремы 1 вытекает, что

$$\varphi(m) = \prod_{i=1}^{n} b_i = \prod_{i=1}^{n} (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = m \cdot \prod_{i=1}^{n} (1 - p_i^{-1}),$$

что и требовалось доказать.

Пример 3. Докажем следующий вариант *китайской теоремы об остатках*: если m_1, \ldots, m_n — натуральные попарно взаимно простые числа, то для любых целых чисел c_1, \ldots, c_n система сравнений

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots \\ x \equiv c_n \pmod{m_n} \end{cases}$$
(3)

имеет единственное решение по модулю $\prod_{i=1}^{n} m_{i}$.

Рассмотрим «ленточную конструкцию»

$$(L_1,\ldots,L_{n+1}),$$

где $a_i = m_i$ и $b_i = 1$.

Обозначим через k_1, \ldots, k_n остатки от деления чисел c_1, \ldots, c_n соответственно на числа m_1, \ldots, m_n .

Сформулируем правило 1 в следующем виде: на i-й (i = 1, ..., n) рабочей ленте среди первых m_i клеток маркером отметим единственную клетку с номером k_i .

Отсюда вытекает, что в силу правила 3 клетка с номером r результирующей ленты L_{n+1} отмечена маркером тогда и только тогда, когда число r сравнимо с каждым из чисел c_i $(i=1,\ldots,n)$ по модулю m_i .

Из теоремы 1 вытекает, что число отмеченных маркером клеток результирующей ленты L_{n+1} равно

$$\prod_{i=1}^{n} b_i = \prod_{i=1}^{n} 1 = 1,$$

что и требовалось доказать.

Заключение

Рассмотренная в работе «ленточная конструкция» представляет, по своей сути, *гео-метрическую модель*, предназначенную для унифицированного подсчета числа элементов конечных множеств, определенных в терминах классов вычетов по попарно простым модулям.

Отсюда вытекает, что «ленточная конструкция» является *геометрической моделью* некоторой общей комбинаторной схемы, формулируемой в терминах евклидова кольца.

Из приведенных выше примеров следует, что мощь «ленточной конструкции» усилится, если интересоваться не только количеством отмеченных клеток на результирующей ленте, но и их номерами. Действительно, в примерах 1 и 2 мы находим все числа, взаимно простые с модулем, а в примере 3 — решение системы сравнений (3), которое, как известно, имеет вид [1]

$$x = m_2 \cdot \ldots \cdot m_n \cdot x_1 \cdot c_1 + m_1 \cdot m_3 \cdot \ldots \cdot m_n \cdot x_2 \cdot c_2 + \ldots + m_1 \cdot \ldots \cdot m_{n-1} \cdot x_n \cdot c_n,$$

где числа $x_1, x_2, \dots x_n$ находятся из условий

Принимая во внимание, что в последнее время наблюдается тенденция к систематическому применению теории конечных колец и модулей линейных форм над конечными кольцами в процессе решения задач криптографии (по крайней мере, при решении задач анализа и синтеза поточных шифров), можно заключить, что теоретическое исследование этой общей комбинаторной схемы является актуальным как для комбинаторного анализа, так и с прикладной точки зрения. Анализ такой общей комбинаторной схемы является предметом дальнейших исследований.

В заключение автор выражает благодарность рецензенту, замечания которого позволили уточнить некоторые результаты.

ЛИТЕРАТУРА

- 1. *Харин Ю. С., Берник В. И., Матвеев Г. В., Агиевич С. В.* Математические и компьютерные основы криптологии. Минск: Новое знание, 2003. 382 с.
- 2. Лидл Р., Нидеррайтер Г. Конечные поля. Т. 1. М.: Мир, 1988. 430 с.